File size: 14,365 Bytes
160c5c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22bc532
 
 
 
 
 
160c5c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f03e49c
160c5c1
 
 
 
 
 
 
22bc532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160c5c1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---

license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: hubert-classifier-aug-fold-0
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-classifier-aug-fold-0

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6722
- Accuracy: 0.8706
- Precision: 0.8828
- Recall: 0.8706
- F1: 0.8708
- Binary: 0.9097

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500

- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
| No log        | 0.24  | 50   | 4.4197          | 0.0210   | 0.0174    | 0.0210 | 0.0057 | 0.1713 |
| No log        | 0.48  | 100  | 4.2999          | 0.0479   | 0.0457    | 0.0479 | 0.0233 | 0.3186 |
| No log        | 0.72  | 150  | 3.9495          | 0.0517   | 0.0304    | 0.0517 | 0.0221 | 0.3297 |
| No log        | 0.96  | 200  | 3.6566          | 0.0779   | 0.0264    | 0.0779 | 0.0319 | 0.3483 |
| 4.2316        | 1.2   | 250  | 3.4461          | 0.0944   | 0.0410    | 0.0944 | 0.0381 | 0.3633 |
| 4.2316        | 1.44  | 300  | 3.2464          | 0.1266   | 0.0635    | 0.1266 | 0.0624 | 0.3869 |
| 4.2316        | 1.68  | 350  | 3.0578          | 0.1476   | 0.0942    | 0.1476 | 0.0816 | 0.3983 |
| 4.2316        | 1.92  | 400  | 2.7652          | 0.2210   | 0.1506    | 0.2210 | 0.1354 | 0.4527 |
| 3.3453        | 2.16  | 450  | 2.4759          | 0.3026   | 0.2342    | 0.3026 | 0.2120 | 0.5108 |
| 3.3453        | 2.4   | 500  | 2.1916          | 0.3925   | 0.3092    | 0.3925 | 0.3043 | 0.5742 |
| 3.3453        | 2.63  | 550  | 1.9549          | 0.4524   | 0.3866    | 0.4524 | 0.3861 | 0.6169 |
| 3.3453        | 2.87  | 600  | 1.7926          | 0.4891   | 0.4796    | 0.4891 | 0.4231 | 0.6419 |
| 2.4259        | 3.11  | 650  | 1.5900          | 0.5700   | 0.5456    | 0.5700 | 0.5217 | 0.6991 |
| 2.4259        | 3.35  | 700  | 1.3724          | 0.6180   | 0.6275    | 0.6180 | 0.5730 | 0.7328 |
| 2.4259        | 3.59  | 750  | 1.2748          | 0.6502   | 0.6406    | 0.6502 | 0.6102 | 0.7560 |
| 2.4259        | 3.83  | 800  | 1.1681          | 0.6704   | 0.6791    | 0.6704 | 0.6384 | 0.7703 |
| 1.7305        | 4.07  | 850  | 1.0720          | 0.7139   | 0.7255    | 0.7139 | 0.6889 | 0.8001 |
| 1.7305        | 4.31  | 900  | 1.0337          | 0.7146   | 0.7298    | 0.7146 | 0.6921 | 0.7993 |
| 1.7305        | 4.55  | 950  | 0.9137          | 0.7423   | 0.7541    | 0.7423 | 0.7231 | 0.8199 |
| 1.7305        | 4.79  | 1000 | 0.8462          | 0.7633   | 0.7716    | 0.7633 | 0.7494 | 0.8345 |
| 1.3376        | 5.03  | 1050 | 0.8048          | 0.7790   | 0.7985    | 0.7790 | 0.7685 | 0.8462 |
| 1.3376        | 5.27  | 1100 | 0.7739          | 0.7850   | 0.7900    | 0.7850 | 0.7706 | 0.8493 |
| 1.3376        | 5.51  | 1150 | 0.7713          | 0.7955   | 0.8096    | 0.7955 | 0.7892 | 0.8569 |
| 1.3376        | 5.75  | 1200 | 0.7841          | 0.7925   | 0.8059    | 0.7925 | 0.7866 | 0.8550 |
| 1.3376        | 5.99  | 1250 | 0.7026          | 0.8007   | 0.8249    | 0.8007 | 0.7966 | 0.8609 |
| 1.0806        | 6.23  | 1300 | 0.6965          | 0.8112   | 0.8240    | 0.8112 | 0.8078 | 0.8685 |
| 1.0806        | 6.47  | 1350 | 0.6891          | 0.8142   | 0.8312    | 0.8142 | 0.8097 | 0.8697 |
| 1.0806        | 6.71  | 1400 | 0.6624          | 0.8262   | 0.8387    | 0.8262 | 0.8214 | 0.8781 |
| 1.0806        | 6.95  | 1450 | 0.6302          | 0.8337   | 0.8441    | 0.8337 | 0.8299 | 0.8834 |
| 0.9458        | 7.19  | 1500 | 0.6213          | 0.8367   | 0.8468    | 0.8367 | 0.8321 | 0.8854 |
| 0.9458        | 7.43  | 1550 | 0.6815          | 0.8195   | 0.8331    | 0.8195 | 0.8155 | 0.8738 |
| 0.9458        | 7.66  | 1600 | 0.6206          | 0.8427   | 0.8538    | 0.8427 | 0.8408 | 0.8902 |
| 0.9458        | 7.9   | 1650 | 0.5314          | 0.8577   | 0.8687    | 0.8577 | 0.8556 | 0.9007 |
| 0.8202        | 8.14  | 1700 | 0.5861          | 0.8390   | 0.8505    | 0.8390 | 0.8369 | 0.8874 |
| 0.8202        | 8.38  | 1750 | 0.5927          | 0.8532   | 0.8661    | 0.8532 | 0.8519 | 0.8975 |
| 0.8202        | 8.62  | 1800 | 0.6158          | 0.8449   | 0.8592    | 0.8449 | 0.8420 | 0.8919 |
| 0.8202        | 8.86  | 1850 | 0.5726          | 0.8457   | 0.8569    | 0.8457 | 0.8416 | 0.8918 |
| 0.7454        | 9.1   | 1900 | 0.6392          | 0.8360   | 0.8528    | 0.8360 | 0.8315 | 0.8858 |
| 0.7454        | 9.34  | 1950 | 0.5566          | 0.8577   | 0.8710    | 0.8577 | 0.8569 | 0.9006 |
| 0.7454        | 9.58  | 2000 | 0.5260          | 0.8592   | 0.8693    | 0.8592 | 0.8561 | 0.9010 |
| 0.7454        | 9.82  | 2050 | 0.5470          | 0.8659   | 0.8760    | 0.8659 | 0.8651 | 0.9058 |
| 0.6472        | 10.06 | 2100 | 0.5692          | 0.8554   | 0.8643    | 0.8554 | 0.8541 | 0.9001 |
| 0.6472        | 10.3  | 2150 | 0.5730          | 0.8599   | 0.8683    | 0.8599 | 0.8574 | 0.9016 |
| 0.6472        | 10.54 | 2200 | 0.5408          | 0.8637   | 0.8715    | 0.8637 | 0.8619 | 0.9048 |
| 0.6472        | 10.78 | 2250 | 0.5869          | 0.8652   | 0.8739    | 0.8652 | 0.8635 | 0.9052 |
| 0.6204        | 11.02 | 2300 | 0.6284          | 0.8539   | 0.8638    | 0.8539 | 0.8511 | 0.8985 |
| 0.6204        | 11.26 | 2350 | 0.5792          | 0.8599   | 0.8674    | 0.8599 | 0.8565 | 0.9024 |
| 0.6204        | 11.5  | 2400 | 0.6085          | 0.8592   | 0.8704    | 0.8592 | 0.8568 | 0.9011 |
| 0.6204        | 11.74 | 2450 | 0.6259          | 0.8517   | 0.8590    | 0.8517 | 0.8493 | 0.8958 |
| 0.6204        | 11.98 | 2500 | 0.6429          | 0.8494   | 0.8634    | 0.8494 | 0.8474 | 0.8945 |
| 0.5797        | 12.22 | 2550 | 0.6478          | 0.8502   | 0.8596    | 0.8502 | 0.8480 | 0.8960 |
| 0.5797        | 12.46 | 2600 | 0.5734          | 0.8652   | 0.8737    | 0.8652 | 0.8619 | 0.9055 |
| 0.5797        | 12.69 | 2650 | 0.6109          | 0.8569   | 0.8667    | 0.8569 | 0.8528 | 0.9003 |
| 0.5797        | 12.93 | 2700 | 0.5982          | 0.8652   | 0.8784    | 0.8652 | 0.8632 | 0.9058 |
| 0.542         | 13.17 | 2750 | 0.6024          | 0.8539   | 0.8655    | 0.8539 | 0.8527 | 0.8975 |
| 0.542         | 13.41 | 2800 | 0.5819          | 0.8629   | 0.8707    | 0.8629 | 0.8609 | 0.9056 |
| 0.542         | 13.65 | 2850 | 0.5870          | 0.8689   | 0.8781    | 0.8689 | 0.8680 | 0.9085 |
| 0.542         | 13.89 | 2900 | 0.5818          | 0.8637   | 0.8710    | 0.8637 | 0.8619 | 0.9042 |
| 0.5116        | 14.13 | 2950 | 0.5965          | 0.8599   | 0.8709    | 0.8599 | 0.8590 | 0.9035 |
| 0.5116        | 14.37 | 3000 | 0.6023          | 0.8607   | 0.8675    | 0.8607 | 0.8581 | 0.9029 |
| 0.5116        | 14.61 | 3050 | 0.6432          | 0.8637   | 0.8745    | 0.8637 | 0.8620 | 0.9040 |
| 0.5116        | 14.85 | 3100 | 0.6255          | 0.8584   | 0.8703    | 0.8584 | 0.8574 | 0.9014 |
| 0.4756        | 15.09 | 3150 | 0.6000          | 0.8629   | 0.8710    | 0.8629 | 0.8615 | 0.9040 |
| 0.4756        | 15.33 | 3200 | 0.6462          | 0.8689   | 0.8793    | 0.8689 | 0.8682 | 0.9082 |
| 0.4756        | 15.57 | 3250 | 0.6419          | 0.8539   | 0.8641    | 0.8539 | 0.8518 | 0.8984 |
| 0.4756        | 15.81 | 3300 | 0.6592          | 0.8569   | 0.8624    | 0.8569 | 0.8538 | 0.9012 |
| 0.4492        | 16.05 | 3350 | 0.6195          | 0.8607   | 0.8687    | 0.8607 | 0.8591 | 0.9034 |
| 0.4492        | 16.29 | 3400 | 0.6042          | 0.8697   | 0.8803    | 0.8697 | 0.8687 | 0.9090 |
| 0.4492        | 16.53 | 3450 | 0.6235          | 0.8562   | 0.8664    | 0.8562 | 0.8544 | 0.8998 |
| 0.4492        | 16.77 | 3500 | 0.6332          | 0.8674   | 0.8756    | 0.8674 | 0.8659 | 0.9069 |
| 0.4383        | 17.01 | 3550 | 0.6278          | 0.8584   | 0.8661    | 0.8584 | 0.8566 | 0.9011 |
| 0.4383        | 17.25 | 3600 | 0.5924          | 0.8719   | 0.8806    | 0.8719 | 0.8709 | 0.9100 |
| 0.4383        | 17.49 | 3650 | 0.6176          | 0.8712   | 0.8817    | 0.8712 | 0.8696 | 0.9105 |
| 0.4383        | 17.72 | 3700 | 0.6186          | 0.8712   | 0.8788    | 0.8712 | 0.8694 | 0.9106 |
| 0.4383        | 17.96 | 3750 | 0.6185          | 0.8749   | 0.8849    | 0.8749 | 0.8736 | 0.9124 |
| 0.4249        | 18.2  | 3800 | 0.6101          | 0.8742   | 0.8820    | 0.8742 | 0.8735 | 0.9116 |
| 0.4249        | 18.44 | 3850 | 0.6121          | 0.8689   | 0.8802    | 0.8689 | 0.8682 | 0.9085 |
| 0.4249        | 18.68 | 3900 | 0.6568          | 0.8614   | 0.8719    | 0.8614 | 0.8599 | 0.9031 |
| 0.4249        | 18.92 | 3950 | 0.6292          | 0.8697   | 0.8797    | 0.8697 | 0.8688 | 0.9091 |
| 0.4073        | 19.16 | 4000 | 0.6200          | 0.8719   | 0.8822    | 0.8719 | 0.8702 | 0.9103 |
| 0.4073        | 19.4  | 4050 | 0.6544          | 0.8644   | 0.8740    | 0.8644 | 0.8635 | 0.9052 |
| 0.4073        | 19.64 | 4100 | 0.6441          | 0.8652   | 0.8731    | 0.8652 | 0.8639 | 0.9061 |
| 0.4073        | 19.88 | 4150 | 0.6056          | 0.8779   | 0.8836    | 0.8779 | 0.8764 | 0.9146 |
| 0.3797        | 20.12 | 4200 | 0.6192          | 0.8742   | 0.8815    | 0.8742 | 0.8728 | 0.9117 |
| 0.3797        | 20.36 | 4250 | 0.5936          | 0.8787   | 0.8864    | 0.8787 | 0.8775 | 0.9156 |
| 0.3797        | 20.6  | 4300 | 0.6288          | 0.8749   | 0.8836    | 0.8749 | 0.8736 | 0.9124 |
| 0.3797        | 20.84 | 4350 | 0.6280          | 0.8734   | 0.8812    | 0.8734 | 0.8717 | 0.9116 |
| 0.3727        | 21.08 | 4400 | 0.6542          | 0.8712   | 0.8782    | 0.8712 | 0.8694 | 0.9097 |
| 0.3727        | 21.32 | 4450 | 0.6506          | 0.8667   | 0.8761    | 0.8667 | 0.8643 | 0.9063 |
| 0.3727        | 21.56 | 4500 | 0.6217          | 0.8727   | 0.8789    | 0.8727 | 0.8707 | 0.9105 |
| 0.3727        | 21.8  | 4550 | 0.6120          | 0.8779   | 0.8836    | 0.8779 | 0.8769 | 0.9142 |
| 0.3495        | 22.04 | 4600 | 0.6275          | 0.8704   | 0.8786    | 0.8704 | 0.8689 | 0.9092 |
| 0.3495        | 22.28 | 4650 | 0.6258          | 0.8794   | 0.8862    | 0.8794 | 0.8777 | 0.9153 |
| 0.3495        | 22.51 | 4700 | 0.6255          | 0.8682   | 0.8770    | 0.8682 | 0.8663 | 0.9079 |
| 0.3495        | 22.75 | 4750 | 0.6442          | 0.8689   | 0.8772    | 0.8689 | 0.8667 | 0.9085 |
| 0.3495        | 22.99 | 4800 | 0.6274          | 0.8727   | 0.8816    | 0.8727 | 0.8716 | 0.9109 |
| 0.3363        | 23.23 | 4850 | 0.6241          | 0.8712   | 0.8783    | 0.8712 | 0.8693 | 0.9103 |
| 0.3363        | 23.47 | 4900 | 0.5921          | 0.8824   | 0.8886    | 0.8824 | 0.8811 | 0.9175 |
| 0.3363        | 23.71 | 4950 | 0.6452          | 0.8749   | 0.8832    | 0.8749 | 0.8732 | 0.9124 |
| 0.3363        | 23.95 | 5000 | 0.6247          | 0.8757   | 0.8851    | 0.8757 | 0.8739 | 0.9129 |
| 0.3218        | 24.19 | 5050 | 0.6176          | 0.8816   | 0.8897    | 0.8816 | 0.8797 | 0.9173 |
| 0.3218        | 24.43 | 5100 | 0.6232          | 0.8772   | 0.8846    | 0.8772 | 0.8753 | 0.9139 |
| 0.3218        | 24.67 | 5150 | 0.6267          | 0.8757   | 0.8833    | 0.8757 | 0.8742 | 0.9131 |
| 0.3218        | 24.91 | 5200 | 0.6109          | 0.8749   | 0.8825    | 0.8749 | 0.8736 | 0.9124 |
| 0.3173        | 25.15 | 5250 | 0.6192          | 0.8801   | 0.8878    | 0.8801 | 0.8786 | 0.9160 |
| 0.3173        | 25.39 | 5300 | 0.6303          | 0.8764   | 0.8853    | 0.8764 | 0.8750 | 0.9134 |
| 0.3173        | 25.63 | 5350 | 0.6552          | 0.8742   | 0.8818    | 0.8742 | 0.8726 | 0.9115 |
| 0.3173        | 25.87 | 5400 | 0.6291          | 0.8712   | 0.8782    | 0.8712 | 0.8697 | 0.9094 |
| 0.316         | 26.11 | 5450 | 0.6041          | 0.8816   | 0.8874    | 0.8816 | 0.8805 | 0.9169 |
| 0.316         | 26.35 | 5500 | 0.6254          | 0.8809   | 0.8887    | 0.8809 | 0.8792 | 0.9166 |
| 0.316         | 26.59 | 5550 | 0.6147          | 0.8801   | 0.8868    | 0.8801 | 0.8789 | 0.9160 |
| 0.316         | 26.83 | 5600 | 0.6255          | 0.8794   | 0.8866    | 0.8794 | 0.8780 | 0.9155 |
| 0.2917        | 27.07 | 5650 | 0.5997          | 0.8824   | 0.8893    | 0.8824 | 0.8811 | 0.9173 |
| 0.2917        | 27.31 | 5700 | 0.5993          | 0.8831   | 0.8906    | 0.8831 | 0.8817 | 0.9181 |
| 0.2917        | 27.54 | 5750 | 0.6007          | 0.8809   | 0.8889    | 0.8809 | 0.8796 | 0.9166 |
| 0.2917        | 27.78 | 5800 | 0.6041          | 0.8787   | 0.8871    | 0.8787 | 0.8772 | 0.9152 |
| 0.2896        | 28.02 | 5850 | 0.5977          | 0.8854   | 0.8921    | 0.8854 | 0.8844 | 0.9196 |
| 0.2896        | 28.26 | 5900 | 0.5875          | 0.8869   | 0.8937    | 0.8869 | 0.8858 | 0.9210 |
| 0.2896        | 28.5  | 5950 | 0.6133          | 0.8764   | 0.8843    | 0.8764 | 0.8750 | 0.9136 |
| 0.2896        | 28.74 | 6000 | 0.6153          | 0.8794   | 0.8874    | 0.8794 | 0.8783 | 0.9157 |
| 0.2896        | 28.98 | 6050 | 0.6031          | 0.8816   | 0.8891    | 0.8816 | 0.8799 | 0.9173 |
| 0.2821        | 29.22 | 6100 | 0.6034          | 0.8839   | 0.8908    | 0.8839 | 0.8823 | 0.9189 |
| 0.2821        | 29.46 | 6150 | 0.6003          | 0.8831   | 0.8895    | 0.8831 | 0.8815 | 0.9184 |
| 0.2821        | 29.7  | 6200 | 0.6013          | 0.8846   | 0.8911    | 0.8846 | 0.8832 | 0.9194 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.15.1