fydhfzh commited on
Commit
2ccf5b8
1 Parent(s): 2312b6f

End of training

Browse files
README.md CHANGED
@@ -20,12 +20,12 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.6112
24
- - Accuracy: 0.8733
25
- - Precision: 0.8849
26
- - Recall: 0.8733
27
- - F1: 0.8715
28
- - Binary: 0.9115
29
 
30
  ## Model description
31
 
@@ -53,116 +53,102 @@ The following hyperparameters were used during training:
53
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
  - lr_scheduler_type: linear
55
  - lr_scheduler_warmup_steps: 500
56
- - num_epochs: 30
57
  - mixed_precision_training: Native AMP
58
 
59
  ### Training results
60
 
61
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
62
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
63
- | No log | 0.24 | 50 | 4.4173 | 0.0120 | 0.0018 | 0.0120 | 0.0027 | 0.1454 |
64
- | No log | 0.48 | 100 | 4.3112 | 0.0307 | 0.0029 | 0.0307 | 0.0050 | 0.2561 |
65
- | No log | 0.72 | 150 | 3.9716 | 0.0577 | 0.0136 | 0.0577 | 0.0137 | 0.3354 |
66
- | No log | 0.96 | 200 | 3.6532 | 0.0906 | 0.0647 | 0.0906 | 0.0408 | 0.3616 |
67
- | 4.2325 | 1.2 | 250 | 3.3860 | 0.1311 | 0.0767 | 0.1311 | 0.0725 | 0.3903 |
68
- | 4.2325 | 1.44 | 300 | 3.1896 | 0.2150 | 0.1277 | 0.2150 | 0.1379 | 0.4468 |
69
- | 4.2325 | 1.68 | 350 | 2.9240 | 0.2412 | 0.1475 | 0.2412 | 0.1486 | 0.4669 |
70
- | 4.2325 | 1.92 | 400 | 2.6191 | 0.2861 | 0.2519 | 0.2861 | 0.2143 | 0.4985 |
71
- | 3.2742 | 2.16 | 450 | 2.3504 | 0.3603 | 0.2949 | 0.3603 | 0.2791 | 0.5510 |
72
- | 3.2742 | 2.4 | 500 | 2.0177 | 0.4981 | 0.4172 | 0.4981 | 0.4130 | 0.6467 |
73
- | 3.2742 | 2.63 | 550 | 1.9152 | 0.5146 | 0.5098 | 0.5146 | 0.4630 | 0.6586 |
74
- | 3.2742 | 2.87 | 600 | 1.6539 | 0.5918 | 0.5981 | 0.5918 | 0.5415 | 0.7128 |
75
- | 2.3027 | 3.11 | 650 | 1.4801 | 0.6494 | 0.6389 | 0.6494 | 0.6128 | 0.7532 |
76
- | 2.3027 | 3.35 | 700 | 1.2164 | 0.7124 | 0.6887 | 0.7124 | 0.6790 | 0.7980 |
77
- | 2.3027 | 3.59 | 750 | 1.1214 | 0.7236 | 0.7205 | 0.7236 | 0.6985 | 0.8057 |
78
- | 2.3027 | 3.83 | 800 | 1.0199 | 0.7438 | 0.7357 | 0.7438 | 0.7187 | 0.8209 |
79
- | 1.6257 | 4.07 | 850 | 0.9595 | 0.7528 | 0.7644 | 0.7528 | 0.7354 | 0.8270 |
80
- | 1.6257 | 4.31 | 900 | 0.8867 | 0.7670 | 0.7720 | 0.7670 | 0.7507 | 0.8369 |
81
- | 1.6257 | 4.55 | 950 | 0.8603 | 0.7820 | 0.7875 | 0.7820 | 0.7713 | 0.8480 |
82
- | 1.6257 | 4.79 | 1000 | 0.7999 | 0.7723 | 0.7874 | 0.7723 | 0.7638 | 0.8413 |
83
- | 1.2686 | 5.03 | 1050 | 0.7813 | 0.7948 | 0.8123 | 0.7948 | 0.7873 | 0.8577 |
84
- | 1.2686 | 5.27 | 1100 | 0.7312 | 0.8165 | 0.8300 | 0.8165 | 0.8100 | 0.8709 |
85
- | 1.2686 | 5.51 | 1150 | 0.7178 | 0.8180 | 0.8347 | 0.8180 | 0.8132 | 0.8718 |
86
- | 1.2686 | 5.75 | 1200 | 0.7108 | 0.8060 | 0.8199 | 0.8060 | 0.8001 | 0.8646 |
87
- | 1.2686 | 5.99 | 1250 | 0.6504 | 0.8247 | 0.8304 | 0.8247 | 0.8165 | 0.8772 |
88
- | 1.0234 | 6.23 | 1300 | 0.6944 | 0.8187 | 0.8310 | 0.8187 | 0.8125 | 0.8725 |
89
- | 1.0234 | 6.47 | 1350 | 0.6046 | 0.8397 | 0.8548 | 0.8397 | 0.8383 | 0.8880 |
90
- | 1.0234 | 6.71 | 1400 | 0.6195 | 0.8382 | 0.8489 | 0.8382 | 0.8335 | 0.8869 |
91
- | 1.0234 | 6.95 | 1450 | 0.6295 | 0.8412 | 0.8514 | 0.8412 | 0.8372 | 0.8894 |
92
- | 0.8831 | 7.19 | 1500 | 0.6205 | 0.8337 | 0.8419 | 0.8337 | 0.8303 | 0.8837 |
93
- | 0.8831 | 7.43 | 1550 | 0.6006 | 0.8464 | 0.8590 | 0.8464 | 0.8447 | 0.8935 |
94
- | 0.8831 | 7.66 | 1600 | 0.5860 | 0.8592 | 0.8684 | 0.8592 | 0.8579 | 0.9036 |
95
- | 0.8831 | 7.9 | 1650 | 0.5906 | 0.8419 | 0.8525 | 0.8419 | 0.8409 | 0.8909 |
96
- | 0.7822 | 8.14 | 1700 | 0.6277 | 0.8457 | 0.8567 | 0.8457 | 0.8420 | 0.8922 |
97
- | 0.7822 | 8.38 | 1750 | 0.5977 | 0.8532 | 0.8659 | 0.8532 | 0.8496 | 0.8980 |
98
- | 0.7822 | 8.62 | 1800 | 0.5970 | 0.8622 | 0.8696 | 0.8622 | 0.8601 | 0.9037 |
99
- | 0.7822 | 8.86 | 1850 | 0.5471 | 0.8607 | 0.8678 | 0.8607 | 0.8593 | 0.9034 |
100
- | 0.7039 | 9.1 | 1900 | 0.5848 | 0.8569 | 0.8687 | 0.8569 | 0.8541 | 0.8999 |
101
- | 0.7039 | 9.34 | 1950 | 0.5518 | 0.8682 | 0.8748 | 0.8682 | 0.8665 | 0.9082 |
102
- | 0.7039 | 9.58 | 2000 | 0.5860 | 0.8667 | 0.8760 | 0.8667 | 0.8653 | 0.9069 |
103
- | 0.7039 | 9.82 | 2050 | 0.5937 | 0.8652 | 0.8743 | 0.8652 | 0.8624 | 0.9053 |
104
- | 0.6314 | 10.06 | 2100 | 0.5993 | 0.8607 | 0.8688 | 0.8607 | 0.8592 | 0.9021 |
105
- | 0.6314 | 10.3 | 2150 | 0.5401 | 0.8697 | 0.8780 | 0.8697 | 0.8675 | 0.9094 |
106
- | 0.6314 | 10.54 | 2200 | 0.5701 | 0.8607 | 0.8744 | 0.8607 | 0.8600 | 0.9026 |
107
- | 0.6314 | 10.78 | 2250 | 0.5303 | 0.8757 | 0.8854 | 0.8757 | 0.8738 | 0.9129 |
108
- | 0.6017 | 11.02 | 2300 | 0.5408 | 0.8772 | 0.8830 | 0.8772 | 0.8752 | 0.9139 |
109
- | 0.6017 | 11.26 | 2350 | 0.5218 | 0.8809 | 0.8857 | 0.8809 | 0.8785 | 0.9168 |
110
- | 0.6017 | 11.5 | 2400 | 0.6290 | 0.8584 | 0.8694 | 0.8584 | 0.8555 | 0.9005 |
111
- | 0.6017 | 11.74 | 2450 | 0.5580 | 0.8644 | 0.8715 | 0.8644 | 0.8631 | 0.9055 |
112
- | 0.6017 | 11.98 | 2500 | 0.5415 | 0.8652 | 0.8722 | 0.8652 | 0.8641 | 0.9060 |
113
- | 0.5539 | 12.22 | 2550 | 0.5297 | 0.8749 | 0.8835 | 0.8749 | 0.8738 | 0.9123 |
114
- | 0.5539 | 12.46 | 2600 | 0.5721 | 0.8682 | 0.8765 | 0.8682 | 0.8659 | 0.9079 |
115
- | 0.5539 | 12.69 | 2650 | 0.5989 | 0.8697 | 0.8802 | 0.8697 | 0.8689 | 0.9098 |
116
- | 0.5539 | 12.93 | 2700 | 0.6499 | 0.8629 | 0.8757 | 0.8629 | 0.8613 | 0.9053 |
117
- | 0.5168 | 13.17 | 2750 | 0.5816 | 0.8749 | 0.8831 | 0.8749 | 0.8739 | 0.9124 |
118
- | 0.5168 | 13.41 | 2800 | 0.6052 | 0.8764 | 0.8868 | 0.8764 | 0.8746 | 0.9133 |
119
- | 0.5168 | 13.65 | 2850 | 0.6148 | 0.8697 | 0.8803 | 0.8697 | 0.8679 | 0.9084 |
120
- | 0.5168 | 13.89 | 2900 | 0.6010 | 0.8779 | 0.8875 | 0.8779 | 0.8764 | 0.9153 |
121
- | 0.4881 | 14.13 | 2950 | 0.5583 | 0.8801 | 0.8893 | 0.8801 | 0.8790 | 0.9160 |
122
- | 0.4881 | 14.37 | 3000 | 0.5880 | 0.8779 | 0.8859 | 0.8779 | 0.8763 | 0.9154 |
123
- | 0.4881 | 14.61 | 3050 | 0.5560 | 0.8794 | 0.8893 | 0.8794 | 0.8774 | 0.9169 |
124
- | 0.4881 | 14.85 | 3100 | 0.5339 | 0.8831 | 0.8896 | 0.8831 | 0.8813 | 0.9191 |
125
- | 0.4611 | 15.09 | 3150 | 0.5541 | 0.8816 | 0.8869 | 0.8816 | 0.8803 | 0.9176 |
126
- | 0.4611 | 15.33 | 3200 | 0.5848 | 0.8839 | 0.8900 | 0.8839 | 0.8822 | 0.9190 |
127
- | 0.4611 | 15.57 | 3250 | 0.5712 | 0.8869 | 0.8924 | 0.8869 | 0.8862 | 0.9207 |
128
- | 0.4611 | 15.81 | 3300 | 0.5159 | 0.8921 | 0.8983 | 0.8921 | 0.8916 | 0.9246 |
129
- | 0.4345 | 16.05 | 3350 | 0.5486 | 0.8839 | 0.8920 | 0.8839 | 0.8834 | 0.9191 |
130
- | 0.4345 | 16.29 | 3400 | 0.5568 | 0.8816 | 0.8882 | 0.8816 | 0.8806 | 0.9179 |
131
- | 0.4345 | 16.53 | 3450 | 0.5752 | 0.8839 | 0.8896 | 0.8839 | 0.8828 | 0.9186 |
132
- | 0.4345 | 16.77 | 3500 | 0.5716 | 0.8831 | 0.8897 | 0.8831 | 0.8814 | 0.9181 |
133
- | 0.4208 | 17.01 | 3550 | 0.5562 | 0.8816 | 0.8906 | 0.8816 | 0.8808 | 0.9170 |
134
- | 0.4208 | 17.25 | 3600 | 0.5623 | 0.8809 | 0.8881 | 0.8809 | 0.8804 | 0.9165 |
135
- | 0.4208 | 17.49 | 3650 | 0.5756 | 0.8914 | 0.8982 | 0.8914 | 0.8910 | 0.9238 |
136
- | 0.4208 | 17.72 | 3700 | 0.5662 | 0.8861 | 0.8915 | 0.8861 | 0.8849 | 0.9199 |
137
- | 0.4208 | 17.96 | 3750 | 0.5965 | 0.8891 | 0.8952 | 0.8891 | 0.8882 | 0.9220 |
138
- | 0.4137 | 18.2 | 3800 | 0.5827 | 0.8876 | 0.8958 | 0.8876 | 0.8871 | 0.9217 |
139
- | 0.4137 | 18.44 | 3850 | 0.5463 | 0.8929 | 0.8998 | 0.8929 | 0.8923 | 0.9249 |
140
- | 0.4137 | 18.68 | 3900 | 0.5731 | 0.8869 | 0.8932 | 0.8869 | 0.8858 | 0.9207 |
141
- | 0.4137 | 18.92 | 3950 | 0.5538 | 0.8869 | 0.8933 | 0.8869 | 0.8853 | 0.9209 |
142
- | 0.39 | 19.16 | 4000 | 0.5692 | 0.8869 | 0.8934 | 0.8869 | 0.8854 | 0.9209 |
143
- | 0.39 | 19.4 | 4050 | 0.5288 | 0.8944 | 0.8998 | 0.8944 | 0.8934 | 0.9259 |
144
- | 0.39 | 19.64 | 4100 | 0.5907 | 0.8884 | 0.8951 | 0.8884 | 0.8879 | 0.9219 |
145
- | 0.39 | 19.88 | 4150 | 0.5595 | 0.8884 | 0.8963 | 0.8884 | 0.8869 | 0.9219 |
146
- | 0.359 | 20.12 | 4200 | 0.6029 | 0.8779 | 0.8868 | 0.8779 | 0.8776 | 0.9141 |
147
- | 0.359 | 20.36 | 4250 | 0.5650 | 0.8959 | 0.9026 | 0.8959 | 0.8956 | 0.9272 |
148
- | 0.359 | 20.6 | 4300 | 0.5699 | 0.8869 | 0.8935 | 0.8869 | 0.8863 | 0.9211 |
149
- | 0.359 | 20.84 | 4350 | 0.5717 | 0.8816 | 0.8884 | 0.8816 | 0.8809 | 0.9172 |
150
- | 0.3685 | 21.08 | 4400 | 0.5991 | 0.8794 | 0.8878 | 0.8794 | 0.8780 | 0.9157 |
151
- | 0.3685 | 21.32 | 4450 | 0.5760 | 0.8959 | 0.9037 | 0.8959 | 0.8954 | 0.9274 |
152
- | 0.3685 | 21.56 | 4500 | 0.5753 | 0.8974 | 0.9047 | 0.8974 | 0.8966 | 0.9285 |
153
- | 0.3685 | 21.8 | 4550 | 0.5693 | 0.8891 | 0.8959 | 0.8891 | 0.8873 | 0.9227 |
154
- | 0.3472 | 22.04 | 4600 | 0.5866 | 0.8831 | 0.8905 | 0.8831 | 0.8820 | 0.9184 |
155
- | 0.3472 | 22.28 | 4650 | 0.5781 | 0.8899 | 0.8969 | 0.8899 | 0.8892 | 0.9233 |
156
- | 0.3472 | 22.51 | 4700 | 0.6050 | 0.8921 | 0.8989 | 0.8921 | 0.8910 | 0.9240 |
157
- | 0.3472 | 22.75 | 4750 | 0.5826 | 0.8914 | 0.8965 | 0.8914 | 0.8906 | 0.9238 |
158
- | 0.3472 | 22.99 | 4800 | 0.5809 | 0.8981 | 0.9050 | 0.8981 | 0.8973 | 0.9285 |
159
- | 0.3316 | 23.23 | 4850 | 0.6249 | 0.8869 | 0.8942 | 0.8869 | 0.8865 | 0.9210 |
160
- | 0.3316 | 23.47 | 4900 | 0.5971 | 0.8876 | 0.8937 | 0.8876 | 0.8869 | 0.9214 |
161
- | 0.3316 | 23.71 | 4950 | 0.5849 | 0.8884 | 0.8948 | 0.8884 | 0.8883 | 0.9217 |
162
- | 0.3316 | 23.95 | 5000 | 0.5806 | 0.8854 | 0.8913 | 0.8854 | 0.8854 | 0.9199 |
163
- | 0.3066 | 24.19 | 5050 | 0.5833 | 0.8936 | 0.8996 | 0.8936 | 0.8929 | 0.9254 |
164
- | 0.3066 | 24.43 | 5100 | 0.5802 | 0.8966 | 0.9033 | 0.8966 | 0.8963 | 0.9275 |
165
- | 0.3066 | 24.67 | 5150 | 0.5742 | 0.8906 | 0.8971 | 0.8906 | 0.8901 | 0.9233 |
166
 
167
 
168
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.6784
24
+ - Accuracy: 0.8612
25
+ - Precision: 0.8732
26
+ - Recall: 0.8612
27
+ - F1: 0.8586
28
+ - Binary: 0.9035
29
 
30
  ## Model description
31
 
 
53
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
  - lr_scheduler_type: linear
55
  - lr_scheduler_warmup_steps: 500
56
+ - num_epochs: 100
57
  - mixed_precision_training: Native AMP
58
 
59
  ### Training results
60
 
61
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
62
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
63
+ | No log | 0.24 | 50 | 4.4161 | 0.0180 | 0.0182 | 0.0180 | 0.0106 | 0.1504 |
64
+ | No log | 0.48 | 100 | 4.2802 | 0.0375 | 0.0091 | 0.0375 | 0.0074 | 0.3082 |
65
+ | No log | 0.72 | 150 | 3.9834 | 0.0502 | 0.0086 | 0.0502 | 0.0109 | 0.3226 |
66
+ | No log | 0.96 | 200 | 3.7286 | 0.0569 | 0.0236 | 0.0569 | 0.0159 | 0.3276 |
67
+ | 4.2271 | 1.2 | 250 | 3.4426 | 0.0891 | 0.0270 | 0.0891 | 0.0322 | 0.3596 |
68
+ | 4.2271 | 1.44 | 300 | 3.2540 | 0.1169 | 0.0601 | 0.1169 | 0.0604 | 0.3788 |
69
+ | 4.2271 | 1.68 | 350 | 3.1869 | 0.1176 | 0.0721 | 0.1176 | 0.0598 | 0.3683 |
70
+ | 4.2271 | 1.92 | 400 | 2.8711 | 0.1618 | 0.1145 | 0.1618 | 0.0984 | 0.4101 |
71
+ | 3.3668 | 2.16 | 450 | 2.6606 | 0.2644 | 0.1518 | 0.2644 | 0.1626 | 0.4816 |
72
+ | 3.3668 | 2.4 | 500 | 2.3190 | 0.3670 | 0.2659 | 0.3670 | 0.2721 | 0.5538 |
73
+ | 3.3668 | 2.63 | 550 | 2.0561 | 0.4120 | 0.3507 | 0.4120 | 0.3239 | 0.5857 |
74
+ | 3.3668 | 2.87 | 600 | 1.8485 | 0.4764 | 0.4155 | 0.4764 | 0.4052 | 0.6330 |
75
+ | 2.5092 | 3.11 | 650 | 1.7040 | 0.5296 | 0.4975 | 0.5296 | 0.4731 | 0.6697 |
76
+ | 2.5092 | 3.35 | 700 | 1.4804 | 0.5970 | 0.5614 | 0.5970 | 0.5443 | 0.7167 |
77
+ | 2.5092 | 3.59 | 750 | 1.3268 | 0.6434 | 0.6271 | 0.6434 | 0.6047 | 0.7488 |
78
+ | 2.5092 | 3.83 | 800 | 1.2244 | 0.6749 | 0.6423 | 0.6749 | 0.6342 | 0.7728 |
79
+ | 1.771 | 4.07 | 850 | 1.0787 | 0.7348 | 0.7587 | 0.7348 | 0.7168 | 0.8142 |
80
+ | 1.771 | 4.31 | 900 | 1.0527 | 0.7281 | 0.7380 | 0.7281 | 0.7070 | 0.8097 |
81
+ | 1.771 | 4.55 | 950 | 0.9342 | 0.7596 | 0.7759 | 0.7596 | 0.7454 | 0.8314 |
82
+ | 1.771 | 4.79 | 1000 | 0.8399 | 0.7880 | 0.7986 | 0.7880 | 0.7766 | 0.8507 |
83
+ | 1.3767 | 5.03 | 1050 | 0.8286 | 0.7970 | 0.8035 | 0.7970 | 0.7883 | 0.8575 |
84
+ | 1.3767 | 5.27 | 1100 | 0.8207 | 0.7888 | 0.8016 | 0.7888 | 0.7823 | 0.8524 |
85
+ | 1.3767 | 5.51 | 1150 | 0.7596 | 0.8112 | 0.8180 | 0.8112 | 0.8033 | 0.8690 |
86
+ | 1.3767 | 5.75 | 1200 | 0.7087 | 0.8067 | 0.8139 | 0.8067 | 0.8007 | 0.8658 |
87
+ | 1.3767 | 5.99 | 1250 | 0.7088 | 0.8045 | 0.8178 | 0.8045 | 0.7991 | 0.8637 |
88
+ | 1.1079 | 6.23 | 1300 | 0.7062 | 0.8150 | 0.8256 | 0.8150 | 0.8101 | 0.8698 |
89
+ | 1.1079 | 6.47 | 1350 | 0.6382 | 0.8285 | 0.8385 | 0.8285 | 0.8272 | 0.8810 |
90
+ | 1.1079 | 6.71 | 1400 | 0.6746 | 0.8240 | 0.8386 | 0.8240 | 0.8209 | 0.8783 |
91
+ | 1.1079 | 6.95 | 1450 | 0.6312 | 0.8367 | 0.8523 | 0.8367 | 0.8347 | 0.8867 |
92
+ | 0.9652 | 7.19 | 1500 | 0.6707 | 0.8255 | 0.8438 | 0.8255 | 0.8215 | 0.8775 |
93
+ | 0.9652 | 7.43 | 1550 | 0.6126 | 0.8479 | 0.8578 | 0.8479 | 0.8449 | 0.8942 |
94
+ | 0.9652 | 7.66 | 1600 | 0.6500 | 0.8427 | 0.8528 | 0.8427 | 0.8397 | 0.8912 |
95
+ | 0.9652 | 7.9 | 1650 | 0.6272 | 0.8412 | 0.8512 | 0.8412 | 0.8375 | 0.8885 |
96
+ | 0.8436 | 8.14 | 1700 | 0.6499 | 0.8509 | 0.8630 | 0.8509 | 0.8470 | 0.8970 |
97
+ | 0.8436 | 8.38 | 1750 | 0.6836 | 0.8337 | 0.8423 | 0.8337 | 0.8294 | 0.8841 |
98
+ | 0.8436 | 8.62 | 1800 | 0.6261 | 0.8487 | 0.8614 | 0.8487 | 0.8478 | 0.8951 |
99
+ | 0.8436 | 8.86 | 1850 | 0.5969 | 0.8584 | 0.8631 | 0.8584 | 0.8555 | 0.9019 |
100
+ | 0.7658 | 9.1 | 1900 | 0.6646 | 0.8397 | 0.8561 | 0.8397 | 0.8357 | 0.8872 |
101
+ | 0.7658 | 9.34 | 1950 | 0.5753 | 0.8644 | 0.8715 | 0.8644 | 0.8624 | 0.9049 |
102
+ | 0.7658 | 9.58 | 2000 | 0.6675 | 0.8404 | 0.8511 | 0.8404 | 0.8365 | 0.8885 |
103
+ | 0.7658 | 9.82 | 2050 | 0.6864 | 0.8360 | 0.8479 | 0.8360 | 0.8319 | 0.8859 |
104
+ | 0.6854 | 10.06 | 2100 | 0.6580 | 0.8479 | 0.8599 | 0.8479 | 0.8435 | 0.8948 |
105
+ | 0.6854 | 10.3 | 2150 | 0.6755 | 0.8509 | 0.8627 | 0.8509 | 0.8487 | 0.8963 |
106
+ | 0.6854 | 10.54 | 2200 | 0.6949 | 0.8524 | 0.8625 | 0.8524 | 0.8499 | 0.8969 |
107
+ | 0.6854 | 10.78 | 2250 | 0.7240 | 0.8434 | 0.8511 | 0.8434 | 0.8411 | 0.8905 |
108
+ | 0.6444 | 11.02 | 2300 | 0.6266 | 0.8502 | 0.8607 | 0.8502 | 0.8462 | 0.8950 |
109
+ | 0.6444 | 11.26 | 2350 | 0.6061 | 0.8674 | 0.8795 | 0.8674 | 0.8647 | 0.9073 |
110
+ | 0.6444 | 11.5 | 2400 | 0.6550 | 0.8509 | 0.8616 | 0.8509 | 0.8477 | 0.8955 |
111
+ | 0.6444 | 11.74 | 2450 | 0.6460 | 0.8457 | 0.8553 | 0.8457 | 0.8441 | 0.8913 |
112
+ | 0.6444 | 11.98 | 2500 | 0.5699 | 0.8577 | 0.8679 | 0.8577 | 0.8572 | 0.9010 |
113
+ | 0.6038 | 12.22 | 2550 | 0.6236 | 0.8517 | 0.8576 | 0.8517 | 0.8491 | 0.8963 |
114
+ | 0.6038 | 12.46 | 2600 | 0.5718 | 0.8674 | 0.8766 | 0.8674 | 0.8639 | 0.9071 |
115
+ | 0.6038 | 12.69 | 2650 | 0.5904 | 0.8644 | 0.8753 | 0.8644 | 0.8649 | 0.9061 |
116
+ | 0.6038 | 12.93 | 2700 | 0.6894 | 0.8487 | 0.8614 | 0.8487 | 0.8470 | 0.8951 |
117
+ | 0.5691 | 13.17 | 2750 | 0.6029 | 0.8652 | 0.8777 | 0.8652 | 0.8643 | 0.9064 |
118
+ | 0.5691 | 13.41 | 2800 | 0.6195 | 0.8727 | 0.8842 | 0.8727 | 0.8721 | 0.9105 |
119
+ | 0.5691 | 13.65 | 2850 | 0.6300 | 0.8682 | 0.8776 | 0.8682 | 0.8668 | 0.9076 |
120
+ | 0.5691 | 13.89 | 2900 | 0.6413 | 0.8644 | 0.8729 | 0.8644 | 0.8618 | 0.9058 |
121
+ | 0.5315 | 14.13 | 2950 | 0.7475 | 0.8509 | 0.8632 | 0.8509 | 0.8477 | 0.8958 |
122
+ | 0.5315 | 14.37 | 3000 | 0.6623 | 0.8659 | 0.8756 | 0.8659 | 0.8641 | 0.9069 |
123
+ | 0.5315 | 14.61 | 3050 | 0.6826 | 0.8547 | 0.8643 | 0.8547 | 0.8522 | 0.8978 |
124
+ | 0.5315 | 14.85 | 3100 | 0.6302 | 0.8712 | 0.8797 | 0.8712 | 0.8694 | 0.9097 |
125
+ | 0.5031 | 15.09 | 3150 | 0.5901 | 0.8787 | 0.8846 | 0.8787 | 0.8769 | 0.9157 |
126
+ | 0.5031 | 15.33 | 3200 | 0.6089 | 0.8652 | 0.8746 | 0.8652 | 0.8632 | 0.9056 |
127
+ | 0.5031 | 15.57 | 3250 | 0.6068 | 0.8719 | 0.8783 | 0.8719 | 0.8708 | 0.9108 |
128
+ | 0.5031 | 15.81 | 3300 | 0.6462 | 0.8652 | 0.8738 | 0.8652 | 0.8632 | 0.9056 |
129
+ | 0.4759 | 16.05 | 3350 | 0.6459 | 0.8607 | 0.8718 | 0.8607 | 0.8591 | 0.9013 |
130
+ | 0.4759 | 16.29 | 3400 | 0.6432 | 0.8644 | 0.8741 | 0.8644 | 0.8629 | 0.9052 |
131
+ | 0.4759 | 16.53 | 3450 | 0.6266 | 0.8652 | 0.8731 | 0.8652 | 0.8640 | 0.9058 |
132
+ | 0.4759 | 16.77 | 3500 | 0.5806 | 0.8824 | 0.8904 | 0.8824 | 0.8823 | 0.9170 |
133
+ | 0.4731 | 17.01 | 3550 | 0.6293 | 0.8697 | 0.8792 | 0.8697 | 0.8698 | 0.9089 |
134
+ | 0.4731 | 17.25 | 3600 | 0.6389 | 0.8682 | 0.8786 | 0.8682 | 0.8681 | 0.9079 |
135
+ | 0.4731 | 17.49 | 3650 | 0.6320 | 0.8712 | 0.8773 | 0.8712 | 0.8696 | 0.9098 |
136
+ | 0.4731 | 17.72 | 3700 | 0.6363 | 0.8742 | 0.8812 | 0.8742 | 0.8724 | 0.9128 |
137
+ | 0.4731 | 17.96 | 3750 | 0.6116 | 0.8854 | 0.8926 | 0.8854 | 0.8841 | 0.9199 |
138
+ | 0.4605 | 18.2 | 3800 | 0.6574 | 0.8794 | 0.8897 | 0.8794 | 0.8778 | 0.9161 |
139
+ | 0.4605 | 18.44 | 3850 | 0.6271 | 0.8749 | 0.8842 | 0.8749 | 0.8731 | 0.9135 |
140
+ | 0.4605 | 18.68 | 3900 | 0.6418 | 0.8749 | 0.8830 | 0.8749 | 0.8736 | 0.9139 |
141
+ | 0.4605 | 18.92 | 3950 | 0.6398 | 0.8704 | 0.8825 | 0.8704 | 0.8688 | 0.9103 |
142
+ | 0.4339 | 19.16 | 4000 | 0.6366 | 0.8689 | 0.8760 | 0.8689 | 0.8664 | 0.9085 |
143
+ | 0.4339 | 19.4 | 4050 | 0.6164 | 0.8727 | 0.8824 | 0.8727 | 0.8716 | 0.9110 |
144
+ | 0.4339 | 19.64 | 4100 | 0.6044 | 0.8846 | 0.8904 | 0.8846 | 0.8837 | 0.9190 |
145
+ | 0.4339 | 19.88 | 4150 | 0.6749 | 0.8742 | 0.8807 | 0.8742 | 0.8716 | 0.9123 |
146
+ | 0.4057 | 20.12 | 4200 | 0.7049 | 0.8637 | 0.8748 | 0.8637 | 0.8617 | 0.9059 |
147
+ | 0.4057 | 20.36 | 4250 | 0.6698 | 0.8727 | 0.8821 | 0.8727 | 0.8718 | 0.9116 |
148
+ | 0.4057 | 20.6 | 4300 | 0.6165 | 0.8779 | 0.8900 | 0.8779 | 0.8776 | 0.9146 |
149
+ | 0.4057 | 20.84 | 4350 | 0.5957 | 0.8697 | 0.8791 | 0.8697 | 0.8688 | 0.9087 |
150
+ | 0.4144 | 21.08 | 4400 | 0.6662 | 0.8644 | 0.8741 | 0.8644 | 0.8644 | 0.9047 |
151
+ | 0.4144 | 21.32 | 4450 | 0.7379 | 0.8487 | 0.8573 | 0.8487 | 0.8481 | 0.8942 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
 
153
 
154
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:31457e89958a3a1987131ee193b233cfd5bc8184249b2a8adbbc354686e56bc0
3
  size 378386248
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a42506fed67750f437bc1892bc7470f9d0326c4907ba018713229490336b9b8
3
  size 378386248
runs/Jul27_04-09-15_LAPTOP-1GID9RGH/events.out.tfevents.1722028156.LAPTOP-1GID9RGH.2524.2 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0d68fc7b8fced1e03e6dbe7e9dc81f4ef894ddf41a8f2613c5eac950b1817627
3
- size 54831
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5007df202d957b12c9eb74cd6a7bb35aec55bab9acd4dbcf60c0f287dcb9729c
3
+ size 60516
runs/Jul27_04-09-15_LAPTOP-1GID9RGH/events.out.tfevents.1722030477.LAPTOP-1GID9RGH.2524.3 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a71e923bd045ac9b74d84545008a8b1f24f83c06f5144813c814da39bc3f933a
3
+ size 610