File size: 7,430 Bytes
56792d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229be43
 
 
 
 
 
56792d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099e8d1
229be43
56792d9
 
 
 
 
 
229be43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56792d9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---

license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: hubert-classifier-aug-fold-3
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-classifier-aug-fold-3

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6214
- Accuracy: 0.8544
- Precision: 0.8720
- Recall: 0.8544
- F1: 0.8540
- Binary: 0.8989

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500

- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
| No log        | 0.24  | 50   | 4.4176          | 0.0172   | 0.0140    | 0.0172 | 0.0083 | 0.1549 |
| No log        | 0.48  | 100  | 4.3072          | 0.0434   | 0.0497    | 0.0434 | 0.0197 | 0.2778 |
| No log        | 0.72  | 150  | 3.9604          | 0.0906   | 0.0606    | 0.0906 | 0.0446 | 0.3581 |
| No log        | 0.96  | 200  | 3.6355          | 0.1191   | 0.0507    | 0.1191 | 0.0558 | 0.3783 |
| 4.235         | 1.2   | 250  | 3.3489          | 0.1700   | 0.0800    | 0.1700 | 0.0858 | 0.4157 |
| 4.235         | 1.44  | 300  | 3.1008          | 0.2015   | 0.1270    | 0.2015 | 0.1158 | 0.4382 |
| 4.235         | 1.68  | 350  | 2.8220          | 0.2906   | 0.2075    | 0.2906 | 0.2012 | 0.5014 |
| 4.235         | 1.92  | 400  | 2.5557          | 0.3843   | 0.3160    | 0.3843 | 0.3099 | 0.5671 |
| 3.2055        | 2.16  | 450  | 2.1790          | 0.4801   | 0.4047    | 0.4801 | 0.4036 | 0.6344 |
| 3.2055        | 2.4   | 500  | 1.9034          | 0.5790   | 0.5557    | 0.5790 | 0.5261 | 0.7028 |
| 3.2055        | 2.63  | 550  | 1.6707          | 0.6135   | 0.6116    | 0.6135 | 0.5701 | 0.7273 |
| 3.2055        | 2.87  | 600  | 1.4658          | 0.6285   | 0.6047    | 0.6285 | 0.5817 | 0.7381 |
| 2.1878        | 3.11  | 650  | 1.3665          | 0.6457   | 0.6522    | 0.6457 | 0.6153 | 0.7534 |
| 2.1878        | 3.35  | 700  | 1.2309          | 0.6757   | 0.6806    | 0.6757 | 0.6446 | 0.7730 |
| 2.1878        | 3.59  | 750  | 1.1077          | 0.7169   | 0.7307    | 0.7169 | 0.6966 | 0.7999 |
| 2.1878        | 3.83  | 800  | 1.0393          | 0.7341   | 0.7548    | 0.7341 | 0.7226 | 0.8130 |
| 1.534         | 4.07  | 850  | 0.9478          | 0.7678   | 0.7794    | 0.7678 | 0.7572 | 0.8384 |
| 1.534         | 4.31  | 900  | 0.8755          | 0.7715   | 0.7789    | 0.7715 | 0.7627 | 0.8395 |
| 1.534         | 4.55  | 950  | 0.8563          | 0.7618   | 0.7737    | 0.7618 | 0.7491 | 0.8330 |
| 1.534         | 4.79  | 1000 | 0.7866          | 0.8007   | 0.8046    | 0.8007 | 0.7921 | 0.8616 |
| 1.2035        | 5.03  | 1050 | 0.7462          | 0.8007   | 0.8212    | 0.8007 | 0.7945 | 0.8591 |
| 1.2035        | 5.27  | 1100 | 0.7003          | 0.8157   | 0.8272    | 0.8157 | 0.8126 | 0.8717 |
| 1.2035        | 5.51  | 1150 | 0.7421          | 0.8105   | 0.8262    | 0.8105 | 0.8074 | 0.8672 |
| 1.2035        | 5.75  | 1200 | 0.7638          | 0.7993   | 0.8294    | 0.7993 | 0.7979 | 0.8595 |
| 1.2035        | 5.99  | 1250 | 0.6872          | 0.8187   | 0.8330    | 0.8187 | 0.8171 | 0.8742 |
| 0.9909        | 6.23  | 1300 | 0.6378          | 0.8345   | 0.8462    | 0.8345 | 0.8338 | 0.8840 |
| 0.9909        | 6.47  | 1350 | 0.6835          | 0.8075   | 0.8266    | 0.8075 | 0.8063 | 0.8669 |
| 0.9909        | 6.71  | 1400 | 0.6367          | 0.8345   | 0.8480    | 0.8345 | 0.8337 | 0.8874 |
| 0.9909        | 6.95  | 1450 | 0.5793          | 0.8434   | 0.8521    | 0.8434 | 0.8425 | 0.8931 |
| 0.8826        | 7.19  | 1500 | 0.6528          | 0.8307   | 0.8458    | 0.8307 | 0.8293 | 0.8824 |
| 0.8826        | 7.43  | 1550 | 0.6361          | 0.8225   | 0.8382    | 0.8225 | 0.8218 | 0.8761 |
| 0.8826        | 7.66  | 1600 | 0.6189          | 0.8360   | 0.8478    | 0.8360 | 0.8334 | 0.8855 |
| 0.8826        | 7.9   | 1650 | 0.6078          | 0.8337   | 0.8433    | 0.8337 | 0.8321 | 0.8831 |
| 0.7752        | 8.14  | 1700 | 0.6868          | 0.8315   | 0.8436    | 0.8315 | 0.8289 | 0.8835 |
| 0.7752        | 8.38  | 1750 | 0.6118          | 0.8419   | 0.8549    | 0.8419 | 0.8411 | 0.8897 |
| 0.7752        | 8.62  | 1800 | 0.5837          | 0.8532   | 0.8660    | 0.8532 | 0.8531 | 0.8974 |
| 0.7752        | 8.86  | 1850 | 0.5758          | 0.8487   | 0.8613    | 0.8487 | 0.8494 | 0.8956 |
| 0.7067        | 9.1   | 1900 | 0.6950          | 0.8307   | 0.8490    | 0.8307 | 0.8279 | 0.8827 |
| 0.7067        | 9.34  | 1950 | 0.5968          | 0.8479   | 0.8595    | 0.8479 | 0.8470 | 0.8942 |
| 0.7067        | 9.58  | 2000 | 0.5714          | 0.8614   | 0.8696    | 0.8614 | 0.8613 | 0.9035 |
| 0.7067        | 9.82  | 2050 | 0.6389          | 0.8427   | 0.8538    | 0.8427 | 0.8415 | 0.8903 |
| 0.6457        | 10.06 | 2100 | 0.6504          | 0.8502   | 0.8639    | 0.8502 | 0.8504 | 0.8948 |
| 0.6457        | 10.3  | 2150 | 0.5776          | 0.8547   | 0.8659    | 0.8547 | 0.8534 | 0.8988 |
| 0.6457        | 10.54 | 2200 | 0.6775          | 0.8434   | 0.8570    | 0.8434 | 0.8438 | 0.8912 |
| 0.6457        | 10.78 | 2250 | 0.5849          | 0.8569   | 0.8686    | 0.8569 | 0.8579 | 0.9013 |
| 0.6098        | 11.02 | 2300 | 0.5767          | 0.8622   | 0.8706    | 0.8622 | 0.8632 | 0.9037 |
| 0.6098        | 11.26 | 2350 | 0.6875          | 0.8404   | 0.8588    | 0.8404 | 0.8404 | 0.8898 |
| 0.6098        | 11.5  | 2400 | 0.7397          | 0.8352   | 0.8483    | 0.8352 | 0.8340 | 0.8865 |
| 0.6098        | 11.74 | 2450 | 0.5998          | 0.8629   | 0.8716    | 0.8629 | 0.8618 | 0.9053 |
| 0.6098        | 11.98 | 2500 | 0.6435          | 0.8449   | 0.8549    | 0.8449 | 0.8441 | 0.8918 |
| 0.5538        | 12.22 | 2550 | 0.6969          | 0.8502   | 0.8640    | 0.8502 | 0.8508 | 0.8965 |
| 0.5538        | 12.46 | 2600 | 0.6323          | 0.8577   | 0.8710    | 0.8577 | 0.8566 | 0.9006 |
| 0.5538        | 12.69 | 2650 | 0.6989          | 0.8532   | 0.8660    | 0.8532 | 0.8525 | 0.8981 |
| 0.5538        | 12.93 | 2700 | 0.6736          | 0.8554   | 0.8666    | 0.8554 | 0.8552 | 0.8994 |
| 0.5356        | 13.17 | 2750 | 0.6737          | 0.8487   | 0.8584    | 0.8487 | 0.8469 | 0.8960 |
| 0.5356        | 13.41 | 2800 | 0.6893          | 0.8457   | 0.8565    | 0.8457 | 0.8452 | 0.8921 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.15.1