File size: 2,691 Bytes
0540984
 
 
 
 
3646ebc
 
 
 
 
0540984
 
 
 
 
 
 
 
 
 
 
3646ebc
 
 
 
 
 
 
0540984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3646ebc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0540984
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---

license: apache-2.0
base_model: asapp/sew-d-tiny-100k-ft-ls100h
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sewd-classifier
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sewd-classifier

This model is a fine-tuned version of [asapp/sew-d-tiny-100k-ft-ls100h](https://huggingface.co/asapp/sew-d-tiny-100k-ft-ls100h) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0550
- Accuracy: 0.2615
- Precision: 0.1852
- Recall: 0.2615
- F1: 0.1884
- Binary: 0.4790

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |

|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|

| No log        | 0.96  | 50   | 4.3136          | 0.0189   | 0.0016    | 0.0189 | 0.0027 | 0.1941 |

| 4.4253        | 1.91  | 100  | 4.0292          | 0.0889   | 0.0382    | 0.0889 | 0.0339 | 0.3261 |

| 4.2369        | 2.87  | 150  | 3.7609          | 0.1267   | 0.0875    | 0.1267 | 0.0706 | 0.3763 |

| 4.0004        | 3.83  | 200  | 3.5568          | 0.1563   | 0.0681    | 0.1563 | 0.0827 | 0.3992 |

| 3.7262        | 4.78  | 250  | 3.4164          | 0.1725   | 0.0858    | 0.1725 | 0.0932 | 0.4151 |

| 3.6489        | 5.74  | 300  | 3.2817          | 0.2156   | 0.1380    | 0.2156 | 0.1327 | 0.4453 |

| 3.5178        | 6.7   | 350  | 3.1920          | 0.2102   | 0.1752    | 0.2102 | 0.1384 | 0.4423 |

| 3.4228        | 7.66  | 400  | 3.1191          | 0.2264   | 0.1794    | 0.2264 | 0.1543 | 0.4553 |

| 3.2967        | 8.61  | 450  | 3.0710          | 0.2507   | 0.1804    | 0.2507 | 0.1807 | 0.4714 |

| 3.3135        | 9.57  | 500  | 3.0550          | 0.2615   | 0.1852    | 0.2615 | 0.1884 | 0.4790 |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.3.0

- Datasets 2.19.1

- Tokenizers 0.15.1