--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer model-index: - name: deberta-semeval25_EN08_CC_fold4 results: [] --- # deberta-semeval25_EN08_CC_fold4 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 9.2901 - Precision Samples: 0.2580 - Recall Samples: 0.6139 - F1 Samples: 0.3025 - Precision Macro: 0.8246 - Recall Macro: 0.3675 - F1 Macro: 0.2397 - Precision Micro: 0.2267 - Recall Micro: 0.4535 - F1 Micro: 0.3023 - Precision Weighted: 0.6457 - Recall Weighted: 0.4535 - F1 Weighted: 0.2035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 8.5826 | 1.0 | 15 | 10.3420 | 1.0 | 0.0 | 0.0 | 1.0 | 0.1951 | 0.1951 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 8.6265 | 2.0 | 30 | 10.0401 | 0.2222 | 0.3833 | 0.2629 | 0.9437 | 0.2622 | 0.2216 | 0.2317 | 0.2209 | 0.2262 | 0.8171 | 0.2209 | 0.0948 | | 7.4706 | 3.0 | 45 | 9.8509 | 0.2167 | 0.3278 | 0.1891 | 0.9180 | 0.2530 | 0.2189 | 0.1905 | 0.1860 | 0.1882 | 0.7653 | 0.1860 | 0.0844 | | 7.3649 | 4.0 | 60 | 9.7126 | 0.3056 | 0.4333 | 0.2617 | 0.9250 | 0.2896 | 0.2308 | 0.2330 | 0.2791 | 0.2540 | 0.7841 | 0.2791 | 0.1163 | | 6.8711 | 5.0 | 75 | 9.5275 | 0.4300 | 0.4222 | 0.2444 | 0.9056 | 0.2866 | 0.2368 | 0.25 | 0.2674 | 0.2584 | 0.6815 | 0.2674 | 0.1312 | | 7.2056 | 6.0 | 90 | 9.4326 | 0.2260 | 0.4778 | 0.2542 | 0.8618 | 0.3154 | 0.2447 | 0.2090 | 0.3256 | 0.2545 | 0.6282 | 0.3256 | 0.1408 | | 7.7788 | 7.0 | 105 | 9.6122 | 0.2333 | 0.5278 | 0.2710 | 0.8411 | 0.3407 | 0.2519 | 0.2162 | 0.3721 | 0.2735 | 0.6179 | 0.3721 | 0.1617 | | 7.2763 | 8.0 | 120 | 9.3189 | 0.2293 | 0.5139 | 0.2608 | 0.8449 | 0.3382 | 0.2558 | 0.2138 | 0.3605 | 0.2684 | 0.6243 | 0.3605 | 0.1670 | | 7.3285 | 9.0 | 135 | 9.2802 | 0.2552 | 0.6083 | 0.3031 | 0.8249 | 0.3650 | 0.2397 | 0.2331 | 0.4419 | 0.3052 | 0.6451 | 0.4419 | 0.2011 | | 7.7699 | 10.0 | 150 | 9.2901 | 0.2580 | 0.6139 | 0.3025 | 0.8246 | 0.3675 | 0.2397 | 0.2267 | 0.4535 | 0.3023 | 0.6457 | 0.4535 | 0.2035 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1