--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: mdeberta-domain_fold1 results: [] --- # mdeberta-domain_fold1 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4601 - Accuracy: 0.8630 - Precision: 0.8456 - Recall: 0.8212 - F1: 0.8320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0441 | 1.0 | 19 | 0.8982 | 0.5890 | 0.8630 | 0.3333 | 0.2471 | | 0.8108 | 2.0 | 38 | 0.7417 | 0.5890 | 0.8630 | 0.3333 | 0.2471 | | 0.7043 | 3.0 | 57 | 0.7361 | 0.6438 | 0.7410 | 0.4222 | 0.3842 | | 0.5828 | 4.0 | 76 | 0.6559 | 0.7192 | 0.6862 | 0.5517 | 0.5662 | | 0.5089 | 5.0 | 95 | 0.5497 | 0.8562 | 0.8516 | 0.7811 | 0.7923 | | 0.3767 | 6.0 | 114 | 0.5299 | 0.8425 | 0.8558 | 0.7517 | 0.7753 | | 0.3405 | 7.0 | 133 | 0.4696 | 0.8699 | 0.8707 | 0.8034 | 0.8248 | | 0.2441 | 8.0 | 152 | 0.4845 | 0.8425 | 0.8207 | 0.8168 | 0.8186 | | 0.2385 | 9.0 | 171 | 0.4611 | 0.8767 | 0.8706 | 0.8217 | 0.8400 | | 0.1887 | 10.0 | 190 | 0.4601 | 0.8630 | 0.8456 | 0.8212 | 0.8320 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1