--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: mdeberta-domain_fold1 results: [] --- # mdeberta-domain_fold1 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5289 - Accuracy: 0.8562 - Precision: 0.8293 - Recall: 0.7956 - F1: 0.8011 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0269 | 1.0 | 19 | 0.8985 | 0.5890 | 0.8630 | 0.3333 | 0.2471 | | 0.8123 | 2.0 | 38 | 0.7571 | 0.5890 | 0.8630 | 0.3333 | 0.2471 | | 0.7079 | 3.0 | 57 | 0.7243 | 0.5890 | 0.8630 | 0.3333 | 0.2471 | | 0.6259 | 4.0 | 76 | 0.7249 | 0.7808 | 0.8511 | 0.6444 | 0.5909 | | 0.5818 | 5.0 | 95 | 0.7192 | 0.7671 | 0.6242 | 0.6222 | 0.5773 | | 0.5081 | 6.0 | 114 | 0.6343 | 0.7877 | 0.7129 | 0.6628 | 0.6687 | | 0.4902 | 7.0 | 133 | 0.5858 | 0.8219 | 0.7819 | 0.7256 | 0.7107 | | 0.3946 | 8.0 | 152 | 0.5584 | 0.8288 | 0.7766 | 0.7656 | 0.7603 | | 0.3876 | 9.0 | 171 | 0.5457 | 0.8562 | 0.8396 | 0.7811 | 0.7859 | | 0.3239 | 10.0 | 190 | 0.5289 | 0.8562 | 0.8293 | 0.7956 | 0.8011 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1