--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: mdeberta-domain_fold2 results: [] --- # mdeberta-domain_fold2 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3971 - Accuracy: 0.925 - Precision: 0.9478 - Recall: 0.6667 - F1: 0.6393 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 5 | 1.0148 | 0.525 | 0.8417 | 0.3333 | 0.2295 | | 1.0205 | 2.0 | 10 | 0.9308 | 0.525 | 0.8417 | 0.3333 | 0.2295 | | 1.0205 | 3.0 | 15 | 0.8402 | 0.525 | 0.8417 | 0.3333 | 0.2295 | | 0.8453 | 4.0 | 20 | 0.7396 | 0.525 | 0.8417 | 0.3333 | 0.2295 | | 0.8453 | 5.0 | 25 | 0.6271 | 0.825 | 0.8883 | 0.5833 | 0.5645 | | 0.6618 | 6.0 | 30 | 0.5737 | 0.825 | 0.8883 | 0.5833 | 0.5645 | | 0.6618 | 7.0 | 35 | 0.4670 | 0.9 | 0.9318 | 0.6458 | 0.6212 | | 0.4922 | 8.0 | 40 | 0.4277 | 0.925 | 0.9478 | 0.6667 | 0.6393 | | 0.4922 | 9.0 | 45 | 0.4040 | 0.925 | 0.9478 | 0.6667 | 0.6393 | | 0.4176 | 10.0 | 50 | 0.3971 | 0.925 | 0.9478 | 0.6667 | 0.6393 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1