File size: 4,495 Bytes
42ba366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
library_name: transformers
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
model-index:
- name: mdeberta-semeval25_narratives09_maxf1_fold3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mdeberta-semeval25_narratives09_maxf1_fold3

This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1972
- Precision Samples: 0.3634
- Recall Samples: 0.7451
- F1 Samples: 0.4586
- Precision Macro: 0.6979
- Recall Macro: 0.4621
- F1 Macro: 0.2857
- Precision Micro: 0.3270
- Recall Micro: 0.6974
- F1 Micro: 0.4452
- Precision Weighted: 0.4846
- Recall Weighted: 0.6974
- F1 Weighted: 0.3864

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|
| 5.6486        | 1.0   | 19   | 5.3335          | 1.0               | 0.0            | 0.0        | 1.0             | 0.0476       | 0.0476   | 1.0             | 0.0          | 0.0      | 1.0                | 0.0             | 0.0         |
| 5.1544        | 2.0   | 38   | 5.1485          | 0.3023            | 0.3614         | 0.2993     | 0.8755          | 0.1773       | 0.1289   | 0.2996          | 0.3063       | 0.3029   | 0.7138             | 0.3063          | 0.1870      |
| 4.8667        | 3.0   | 57   | 4.9432          | 0.2776            | 0.4614         | 0.3282     | 0.8665          | 0.2238       | 0.1327   | 0.2853          | 0.4022       | 0.3338   | 0.6952             | 0.4022          | 0.1947      |
| 4.5126        | 4.0   | 76   | 4.6697          | 0.3487            | 0.5930         | 0.4045     | 0.7826          | 0.2967       | 0.1944   | 0.3166          | 0.5129       | 0.3915   | 0.5781             | 0.5129          | 0.2876      |
| 4.6317        | 5.0   | 95   | 4.4823          | 0.3405            | 0.6624         | 0.4196     | 0.7583          | 0.3672       | 0.2290   | 0.3034          | 0.5978       | 0.4025   | 0.5513             | 0.5978          | 0.3219      |
| 4.4113        | 6.0   | 114  | 4.3402          | 0.3574            | 0.7394         | 0.4481     | 0.7165          | 0.4305       | 0.2537   | 0.3140          | 0.6790       | 0.4294   | 0.4928             | 0.6790          | 0.3587      |
| 3.9755        | 7.0   | 133  | 4.2814          | 0.3659            | 0.7354         | 0.4539     | 0.7175          | 0.4258       | 0.2523   | 0.3176          | 0.6716       | 0.4313   | 0.4960             | 0.6716          | 0.3581      |
| 4.0457        | 8.0   | 152  | 4.2820          | 0.3549            | 0.7009         | 0.4398     | 0.7116          | 0.4227       | 0.2646   | 0.32            | 0.6494       | 0.4287   | 0.4905             | 0.6494          | 0.3644      |
| 4.0695        | 9.0   | 171  | 4.1947          | 0.3767            | 0.7511         | 0.4662     | 0.7109          | 0.4572       | 0.2863   | 0.3259          | 0.7011       | 0.4450   | 0.4949             | 0.7011          | 0.3884      |
| 4.3445        | 10.0  | 190  | 4.1972          | 0.3634            | 0.7451         | 0.4586     | 0.6979          | 0.4621       | 0.2857   | 0.3270          | 0.6974       | 0.4452   | 0.4846             | 0.6974          | 0.3864      |


### Framework versions

- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1