--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer model-index: - name: mdeberta-semeval25_narratives09_maxf1_fold5 results: [] --- # mdeberta-semeval25_narratives09_maxf1_fold5 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0204 - Precision Samples: 0.3603 - Recall Samples: 0.7663 - F1 Samples: 0.4556 - Precision Macro: 0.6906 - Recall Macro: 0.5586 - F1 Macro: 0.3769 - Precision Micro: 0.3165 - Recall Micro: 0.7293 - F1 Micro: 0.4414 - Precision Weighted: 0.4601 - Recall Weighted: 0.7293 - F1 Weighted: 0.3993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 5.5606 | 1.0 | 19 | 5.1744 | 1.0 | 0.0 | 0.0 | 1.0 | 0.1429 | 0.1429 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 4.8514 | 2.0 | 38 | 4.9269 | 0.2759 | 0.2532 | 0.2276 | 0.9377 | 0.2238 | 0.1873 | 0.2880 | 0.2068 | 0.2407 | 0.8409 | 0.2068 | 0.1109 | | 5.1079 | 3.0 | 57 | 4.6308 | 0.3793 | 0.4853 | 0.3604 | 0.8762 | 0.3242 | 0.2396 | 0.3420 | 0.4474 | 0.3876 | 0.6961 | 0.4474 | 0.2402 | | 4.5129 | 4.0 | 76 | 4.4135 | 0.3422 | 0.6197 | 0.4125 | 0.7822 | 0.4150 | 0.2908 | 0.3175 | 0.5789 | 0.4101 | 0.5507 | 0.5789 | 0.3086 | | 4.3874 | 5.0 | 95 | 4.2916 | 0.3576 | 0.6623 | 0.4341 | 0.7168 | 0.4431 | 0.3203 | 0.3265 | 0.6015 | 0.4233 | 0.4756 | 0.6015 | 0.3449 | | 4.0833 | 6.0 | 114 | 4.1434 | 0.3378 | 0.7416 | 0.4323 | 0.7113 | 0.5131 | 0.3405 | 0.2992 | 0.7030 | 0.4198 | 0.4708 | 0.7030 | 0.3689 | | 3.9936 | 7.0 | 133 | 4.0974 | 0.3532 | 0.7462 | 0.4496 | 0.6927 | 0.5341 | 0.3701 | 0.3160 | 0.7068 | 0.4367 | 0.4609 | 0.7068 | 0.3929 | | 3.9677 | 8.0 | 152 | 4.0596 | 0.3606 | 0.7537 | 0.4543 | 0.6921 | 0.5484 | 0.3768 | 0.3193 | 0.7105 | 0.4406 | 0.4618 | 0.7105 | 0.3981 | | 4.0104 | 9.0 | 171 | 4.0379 | 0.3547 | 0.7571 | 0.4524 | 0.6964 | 0.5523 | 0.3803 | 0.3177 | 0.7143 | 0.4398 | 0.4641 | 0.7143 | 0.3998 | | 3.9613 | 10.0 | 190 | 4.0204 | 0.3603 | 0.7663 | 0.4556 | 0.6906 | 0.5586 | 0.3769 | 0.3165 | 0.7293 | 0.4414 | 0.4601 | 0.7293 | 0.3993 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1