g8a9 commited on
Commit
ff36ade
1 Parent(s): 9d35c6f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ model-index:
7
+ - name: roberta-tiny-8l-10M
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # roberta-tiny-8l-10M
15
+
16
+ This model was trained from scratch on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 7.3437
19
+ - Accuracy: 0.0512
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0004
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 32
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 32
43
+ - total_train_batch_size: 512
44
+ - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
45
+ - lr_scheduler_type: cosine
46
+ - lr_scheduler_warmup_steps: 50
47
+ - num_epochs: 100.0
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
54
+ | 7.8102 | 1.04 | 50 | 7.3747 | 0.0514 |
55
+ | 7.805 | 2.08 | 100 | 7.3699 | 0.0517 |
56
+ | 7.7907 | 3.12 | 150 | 7.3595 | 0.0517 |
57
+ | 7.7838 | 4.16 | 200 | 7.3617 | 0.0514 |
58
+ | 7.7706 | 5.21 | 250 | 7.3586 | 0.0514 |
59
+ | 7.2933 | 6.25 | 300 | 7.3566 | 0.0513 |
60
+ | 7.2932 | 7.29 | 350 | 7.3527 | 0.0516 |
61
+ | 7.2986 | 8.33 | 400 | 7.3561 | 0.0516 |
62
+ | 7.289 | 9.37 | 450 | 7.3495 | 0.0515 |
63
+ | 7.2879 | 10.41 | 500 | 7.3455 | 0.0514 |
64
+ | 7.276 | 11.45 | 550 | 7.3477 | 0.0513 |
65
+ | 7.3072 | 12.49 | 600 | 7.3446 | 0.0516 |
66
+ | 7.2978 | 13.53 | 650 | 7.3463 | 0.0514 |
67
+ | 7.2857 | 14.58 | 700 | 7.3426 | 0.0515 |
68
+ | 7.2868 | 15.62 | 750 | 7.3438 | 0.0515 |
69
+ | 7.2973 | 16.66 | 800 | 7.3442 | 0.0517 |
70
+ | 7.2988 | 17.7 | 850 | 7.3437 | 0.0512 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.24.0
76
+ - Pytorch 1.11.0+cu113
77
+ - Datasets 2.6.1
78
+ - Tokenizers 0.12.1