gabrielgcbs
commited on
Commit
•
40743d6
1
Parent(s):
67a96ee
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -230.46 +/- 19.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9ff34fbe50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9ff34fbee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9ff34fbf70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9ff3480040>", "_build": "<function ActorCriticPolicy._build at 0x7f9ff34800d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9ff3480160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9ff34801f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9ff3480280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9ff3480310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9ff34803a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9ff3480430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9ff34f68a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671247433320321781, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKa6Wj7FFcA/kCbiPi5zPr3xV0w+brgcPgAAAAAAAAAAgFMDvcQtuj/HhKS+UeSlPQsUDz0cPgE+AAAAAAAAAAAWcwc/0o8GP/3r1j7KD1C/vQMSP0Azcz4AAAAAAAAAABrlaL5hhho/XlM1vPDQR7+kkYi+zBe6PAAAAAAAAAAAGjBuPQd0rz9S6OA+ChddvpQCc72O6/K8AAAAAAAAAADNhL+7klRXPwi6aDwaDAy/L1uTPf7TpD0AAAAAAAAAADNFMT7Cj4I/KwS2PhBk/L4TZTu9KpliPQAAAAAAAAAAs8MivUYwZz8LIey9PjclvykAXz1Y7nW9AAAAAAAAAABNXee90qKTPxmNiL5ixPC+Vww8vmrOGL4AAAAAAAAAAIC+Qj51k4Y/GMDjPgcr4L5j4OU8fRjVvAAAAAAAAAAAGr+NPcd6rT8irC4/OSuUvskJFL1jDb48AAAAAAAAAABNCkE+0CgmP5MkjD73g0u/zXE8PtJcDD4AAAAAAAAAAECm+j645ry9myFqPAGqGD39LDg6FpMBvgAAgD8AAIA/AJxHPuezKT4lz6Y8Oopjv0hTBT6yQD6+AAAAAAAAAAAddsM+l1kxP2PTDT/7nO2+M2MYPtU6Vz4AAAAAAAAAAABnbT5ROew+jiw7PuOAh7+/su8+I2aPvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8WjjiLWhWsCUhpRSlIwBbJRLV4wBdJRHQHi5BvNu+AV1fZQoaAZoCWgPQwj6RQn6CyhVwJSGlFKUaBVLmWgWR0B4uZuDSPU8dX2UKGgGaAloD0MI7DL8pxu4TsCUhpRSlGgVS4NoFkdAeLm1V5rxiHV9lChoBmgJaA9DCFoO9FDbsFDAlIaUUpRoFUtYaBZHQHi6KlLvkR11fZQoaAZoCWgPQwiVKlH2lvIjwJSGlFKUaBVLk2gWR0B4ulOymhugdX2UKGgGaAloD0MIdXXHYpsXUMCUhpRSlGgVS2NoFkdAeLrthNM4+HV9lChoBmgJaA9DCIaQ8/4/Ni7AlIaUUpRoFUtoaBZHQHi7IzJp35h1fZQoaAZoCWgPQwg8TPvm/uhFwJSGlFKUaBVLc2gWR0B4u8BYFJQMdX2UKGgGaAloD0MIBtUGJyLuasCUhpRSlGgVS5FoFkdAeLv3CsOoYXV9lChoBmgJaA9DCIiBrn0B6UvAlIaUUpRoFUtVaBZHQHi8npKSPlx1fZQoaAZoCWgPQwhmL9tOW39IwJSGlFKUaBVLUGgWR0B4vSWjXWe6dX2UKGgGaAloD0MIogkUsYjtP8CUhpRSlGgVS2JoFkdAeL088cMmW3V9lChoBmgJaA9DCGBa1Ce5KU7AlIaUUpRoFUuJaBZHQHi9WWdEsrd1fZQoaAZoCWgPQwjRsu4fCwNOwJSGlFKUaBVLRGgWR0B4vg2gnMMadX2UKGgGaAloD0MITGvT2F4TKMCUhpRSlGgVS6RoFkdAeL5bKRuCPXV9lChoBmgJaA9DCB+CqtGrHT1AlIaUUpRoFUtoaBZHQHi+m8274BV1fZQoaAZoCWgPQwhQATCeQW1AwJSGlFKUaBVLVWgWR0B4vzdLxqfwdX2UKGgGaAloD0MI9gfKbfsEQcCUhpRSlGgVS2VoFkdAeL+GorFwUHV9lChoBmgJaA9DCHOAYI4eAlbAlIaUUpRoFUtuaBZHQHi/+4G2TgV1fZQoaAZoCWgPQwgbKzHPSjI0wJSGlFKUaBVLk2gWR0B4v/gzguRLdX2UKGgGaAloD0MI7KF9rOBTTMCUhpRSlGgVS0hoFkdAeMAEeQuEmXV9lChoBmgJaA9DCB+fkJ23HVLAlIaUUpRoFUtoaBZHQHjBND2Jzkp1fZQoaAZoCWgPQwjZX3ZPHrBNwJSGlFKUaBVLTWgWR0B4wqpsGgSOdX2UKGgGaAloD0MITkS/tn7iZcCUhpRSlGgVS4NoFkdAeMKjVx0dR3V9lChoBmgJaA9DCCAJ+3YSqTHAlIaUUpRoFUunaBZHQHjC27OE/Sp1fZQoaAZoCWgPQwhCWmPQCUlRwJSGlFKUaBVLfGgWR0B4w1ezD4xldX2UKGgGaAloD0MIzXhb6bW3SMCUhpRSlGgVS1NoFkdAeMNYr8R+SnV9lChoBmgJaA9DCMk6HF2lalPAlIaUUpRoFUtzaBZHQHjDhiG34Kx1fZQoaAZoCWgPQwj8471qZaRHwJSGlFKUaBVLcGgWR0B4xA46wMYudX2UKGgGaAloD0MIJcreUs69UcCUhpRSlGgVS0poFkdAeMRq//NqxnV9lChoBmgJaA9DCAK37uapIFHAlIaUUpRoFUtmaBZHQHjEuso2GZh1fZQoaAZoCWgPQwhubeF5qaA2wJSGlFKUaBVLgmgWR0B4xO1kUbkwdX2UKGgGaAloD0MIYHglyXMUU8CUhpRSlGgVS4doFkdAeMVOAy2x6nV9lChoBmgJaA9DCG0BofXwK1rAlIaUUpRoFUtkaBZHQHjF71Iy0rt1fZQoaAZoCWgPQwjH8UOlEcMfQJSGlFKUaBVLWWgWR0B4xnd0q6OHdX2UKGgGaAloD0MI2/tUFRpMOMCUhpRSlGgVS4VoFkdAeMfnUUfxMHV9lChoBmgJaA9DCNrLttPWYCTAlIaUUpRoFUuVaBZHQHjIII0IkZ91fZQoaAZoCWgPQwippbkVwgoVwJSGlFKUaBVLXGgWR0B4yE6S1Vo6dX2UKGgGaAloD0MIvt798V4VAECUhpRSlGgVS5poFkdAeMjB8QZn+XV9lChoBmgJaA9DCN3qOel9ay3AlIaUUpRoFUtjaBZHQHjJSb2Dg651fZQoaAZoCWgPQwjQmEnUizdjwJSGlFKUaBVLcGgWR0B4yhU83dbgdX2UKGgGaAloD0MICf8iaMxgQcCUhpRSlGgVS3JoFkdAeMpfukUKzHV9lChoBmgJaA9DCE9d+SzPc0zAlIaUUpRoFUtKaBZHQHjLHHvMKTl1fZQoaAZoCWgPQwiN8PYgBCwiwJSGlFKUaBVLd2gWR0B4zAN+b3GodX2UKGgGaAloD0MIXB0AcVdjTsCUhpRSlGgVS35oFkdAeMwjB2wFDHV9lChoBmgJaA9DCGmKAKd3Xl7AlIaUUpRoFUt2aBZHQHjMMfV7QcB1fZQoaAZoCWgPQwjPL0rQX/lRwJSGlFKUaBVLa2gWR0B4zJrEcbR4dX2UKGgGaAloD0MI7QvohTt9V8CUhpRSlGgVS6ZoFkdAeMzHpbD/EXV9lChoBmgJaA9DCKQzMPKyJkLAlIaUUpRoFUuqaBZHQHjNDVtoBaN1fZQoaAZoCWgPQwhzvALRk8oywJSGlFKUaBVLUGgWR0B4zbWMCLdfdX2UKGgGaAloD0MIAkaXN4c5ScCUhpRSlGgVS5JoFkdAeM4wPiDM/3V9lChoBmgJaA9DCFZ/hGHAH1TAlIaUUpRoFUtfaBZHQHjPCPZIxxl1fZQoaAZoCWgPQwghrweT4gFCwJSGlFKUaBVLdWgWR0B4z0rf+CK8dX2UKGgGaAloD0MInrXbLjQXQsCUhpRSlGgVS25oFkdAeNDSNOuaF3V9lChoBmgJaA9DCONw5ldzrErAlIaUUpRoFUtQaBZHQHjSFByCFsZ1fZQoaAZoCWgPQwiWsgxxrOVKwJSGlFKUaBVLomgWR0B40iNaQmu1dX2UKGgGaAloD0MId4GSAgvAIMCUhpRSlGgVS51oFkdAeNI+dsi0OXV9lChoBmgJaA9DCC/6CtKMv0LAlIaUUpRoFUtjaBZHQHjSZljEvTR1fZQoaAZoCWgPQwiPAG4WL047wJSGlFKUaBVLXWgWR0B40oBdUsFudX2UKGgGaAloD0MICJEMObYoTcCUhpRSlGgVS3hoFkdAeNK4fOlfq3V9lChoBmgJaA9DCEW5NH7hN0/AlIaUUpRoFUtlaBZHQHjSm9L6DXh1fZQoaAZoCWgPQwjUSba6nHJBwJSGlFKUaBVLTWgWR0B40r4fwI+odX2UKGgGaAloD0MIrADfbd5FUcCUhpRSlGgVS2hoFkdAeNNedTYNAnV9lChoBmgJaA9DCM8Tz9kCRjvAlIaUUpRoFUuhaBZHQHjUjbWVeKN1fZQoaAZoCWgPQwjbMXVXdvkkwJSGlFKUaBVLjmgWR0B41PlRxcVydX2UKGgGaAloD0MIxJRIopfZOMCUhpRSlGgVS09oFkdAeNX7di2Dx3V9lChoBmgJaA9DCP1oOGVuGVbAlIaUUpRoFUtxaBZHQHjWXpbD/ER1fZQoaAZoCWgPQwiOk8K8x5hXwJSGlFKUaBVLhmgWR0B41tDF6zE8dX2UKGgGaAloD0MII7w9CAGgUsCUhpRSlGgVS4VoFkdAeNf4rBj4H3V9lChoBmgJaA9DCFmLTwEwdlDAlIaUUpRoFUtaaBZHQHjZLYbsF+x1fZQoaAZoCWgPQwhTIoleRmFHwJSGlFKUaBVLaWgWR0B42Zj9XLeRdX2UKGgGaAloD0MIwmuXNhx6TMCUhpRSlGgVS21oFkdAeNmX+VC5VnV9lChoBmgJaA9DCLJkjuVdb0fAlIaUUpRoFUt6aBZHQHjanmV7hNx1fZQoaAZoCWgPQwjRBfUtc74ywJSGlFKUaBVLf2gWR0B42rrRjSXudX2UKGgGaAloD0MIU8vW+iKUU8CUhpRSlGgVS0poFkdAeNswB5ooNXV9lChoBmgJaA9DCBwmGqTgw0rAlIaUUpRoFUuIaBZHQHjbsa4tpVV1fZQoaAZoCWgPQwjmlettMzk4wJSGlFKUaBVLYGgWR0B43byauwHJdX2UKGgGaAloD0MIWOTXDzGSYcCUhpRSlGgVS6poFkdAeN3GZuyeI3V9lChoBmgJaA9DCN53DI/97DnAlIaUUpRoFUumaBZHQHjeIInjQzF1fZQoaAZoCWgPQwjvqgfMQ7pAwJSGlFKUaBVLtWgWR0B43pH09QoDdX2UKGgGaAloD0MIXoB9dOraR8CUhpRSlGgVS45oFkdAeN6NcnmaIHV9lChoBmgJaA9DCG3lJf+TnxNAlIaUUpRoFUtzaBZHQHjesO5J9Rd1fZQoaAZoCWgPQwimmIOgo1tCwJSGlFKUaBVLlmgWR0B435KHwgDBdX2UKGgGaAloD0MI+7DeqBWkQ8CUhpRSlGgVS15oFkdAeOB6F/QSjHV9lChoBmgJaA9DCF69iowO01TAlIaUUpRoFUt0aBZHQHjhyI55qud1fZQoaAZoCWgPQwgTZW8p5/tMwJSGlFKUaBVLZmgWR0B44q3c580DdX2UKGgGaAloD0MIUkgyq3eIEkCUhpRSlGgVS11oFkdAeOKWXkYGdXV9lChoBmgJaA9DCMzR4/c2J0/AlIaUUpRoFUuiaBZHQHjj7DEWIoF1fZQoaAZoCWgPQwirIAa69uEzwJSGlFKUaBVLWWgWR0B45FfNRm9QdX2UKGgGaAloD0MIzSN/MPBkKMCUhpRSlGgVS5poFkdAeOTjpcHGCXV9lChoBmgJaA9DCP35tmCpgVbAlIaUUpRoFUuMaBZHQHjlCauwHJN1fZQoaAZoCWgPQwg6zm3CvT5ZwJSGlFKUaBVLYGgWR0B45Y/6fra/dX2UKGgGaAloD0MIk+LjE7J1QcCUhpRSlGgVS5xoFkdAeOYSowVTJnV9lChoBmgJaA9DCLUZpyGqlkrAlIaUUpRoFUtBaBZHQHjmkQoTfzl1fZQoaAZoCWgPQwgkfzDw3PBVwJSGlFKUaBVLeWgWR0B45qVrylN2dX2UKGgGaAloD0MIGmmpvB1yVMCUhpRSlGgVS3FoFkdAeObbo8p1BHV9lChoBmgJaA9DCP8+48KBo1TAlIaUUpRoFUtpaBZHQHjnVfAsTWZ1fZQoaAZoCWgPQwhbfXVVoGY6wJSGlFKUaBVLi2gWR0B46NK6FuejdX2UKGgGaAloD0MIsTBETl/HQMCUhpRSlGgVS3RoFkdAeOj+z+m3v3V9lChoBmgJaA9DCNV5VPzfYRFAlIaUUpRoFUuUaBZHQHjo95Y5ksl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 32, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8486bb25e77230aceec640edf83880832351c5c72203bbcd0b3ea5db18071629
|
3 |
+
size 147081
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9ff34fbe50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9ff34fbee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9ff34fbf70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9ff3480040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9ff34800d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9ff3480160>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9ff34801f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9ff3480280>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9ff3480310>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9ff34803a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9ff3480430>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9ff34f68a0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 114688,
|
46 |
+
"_total_timesteps": 100000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671247433320321781,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKa6Wj7FFcA/kCbiPi5zPr3xV0w+brgcPgAAAAAAAAAAgFMDvcQtuj/HhKS+UeSlPQsUDz0cPgE+AAAAAAAAAAAWcwc/0o8GP/3r1j7KD1C/vQMSP0Azcz4AAAAAAAAAABrlaL5hhho/XlM1vPDQR7+kkYi+zBe6PAAAAAAAAAAAGjBuPQd0rz9S6OA+ChddvpQCc72O6/K8AAAAAAAAAADNhL+7klRXPwi6aDwaDAy/L1uTPf7TpD0AAAAAAAAAADNFMT7Cj4I/KwS2PhBk/L4TZTu9KpliPQAAAAAAAAAAs8MivUYwZz8LIey9PjclvykAXz1Y7nW9AAAAAAAAAABNXee90qKTPxmNiL5ixPC+Vww8vmrOGL4AAAAAAAAAAIC+Qj51k4Y/GMDjPgcr4L5j4OU8fRjVvAAAAAAAAAAAGr+NPcd6rT8irC4/OSuUvskJFL1jDb48AAAAAAAAAABNCkE+0CgmP5MkjD73g0u/zXE8PtJcDD4AAAAAAAAAAECm+j645ry9myFqPAGqGD39LDg6FpMBvgAAgD8AAIA/AJxHPuezKT4lz6Y8Oopjv0hTBT6yQD6+AAAAAAAAAAAddsM+l1kxP2PTDT/7nO2+M2MYPtU6Vz4AAAAAAAAAAABnbT5ROew+jiw7PuOAh7+/su8+I2aPvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.1468799999999999,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8WjjiLWhWsCUhpRSlIwBbJRLV4wBdJRHQHi5BvNu+AV1fZQoaAZoCWgPQwj6RQn6CyhVwJSGlFKUaBVLmWgWR0B4uZuDSPU8dX2UKGgGaAloD0MI7DL8pxu4TsCUhpRSlGgVS4NoFkdAeLm1V5rxiHV9lChoBmgJaA9DCFoO9FDbsFDAlIaUUpRoFUtYaBZHQHi6KlLvkR11fZQoaAZoCWgPQwiVKlH2lvIjwJSGlFKUaBVLk2gWR0B4ulOymhugdX2UKGgGaAloD0MIdXXHYpsXUMCUhpRSlGgVS2NoFkdAeLrthNM4+HV9lChoBmgJaA9DCIaQ8/4/Ni7AlIaUUpRoFUtoaBZHQHi7IzJp35h1fZQoaAZoCWgPQwg8TPvm/uhFwJSGlFKUaBVLc2gWR0B4u8BYFJQMdX2UKGgGaAloD0MIBtUGJyLuasCUhpRSlGgVS5FoFkdAeLv3CsOoYXV9lChoBmgJaA9DCIiBrn0B6UvAlIaUUpRoFUtVaBZHQHi8npKSPlx1fZQoaAZoCWgPQwhmL9tOW39IwJSGlFKUaBVLUGgWR0B4vSWjXWe6dX2UKGgGaAloD0MIogkUsYjtP8CUhpRSlGgVS2JoFkdAeL088cMmW3V9lChoBmgJaA9DCGBa1Ce5KU7AlIaUUpRoFUuJaBZHQHi9WWdEsrd1fZQoaAZoCWgPQwjRsu4fCwNOwJSGlFKUaBVLRGgWR0B4vg2gnMMadX2UKGgGaAloD0MITGvT2F4TKMCUhpRSlGgVS6RoFkdAeL5bKRuCPXV9lChoBmgJaA9DCB+CqtGrHT1AlIaUUpRoFUtoaBZHQHi+m8274BV1fZQoaAZoCWgPQwhQATCeQW1AwJSGlFKUaBVLVWgWR0B4vzdLxqfwdX2UKGgGaAloD0MI9gfKbfsEQcCUhpRSlGgVS2VoFkdAeL+GorFwUHV9lChoBmgJaA9DCHOAYI4eAlbAlIaUUpRoFUtuaBZHQHi/+4G2TgV1fZQoaAZoCWgPQwgbKzHPSjI0wJSGlFKUaBVLk2gWR0B4v/gzguRLdX2UKGgGaAloD0MI7KF9rOBTTMCUhpRSlGgVS0hoFkdAeMAEeQuEmXV9lChoBmgJaA9DCB+fkJ23HVLAlIaUUpRoFUtoaBZHQHjBND2Jzkp1fZQoaAZoCWgPQwjZX3ZPHrBNwJSGlFKUaBVLTWgWR0B4wqpsGgSOdX2UKGgGaAloD0MITkS/tn7iZcCUhpRSlGgVS4NoFkdAeMKjVx0dR3V9lChoBmgJaA9DCCAJ+3YSqTHAlIaUUpRoFUunaBZHQHjC27OE/Sp1fZQoaAZoCWgPQwhCWmPQCUlRwJSGlFKUaBVLfGgWR0B4w1ezD4xldX2UKGgGaAloD0MIzXhb6bW3SMCUhpRSlGgVS1NoFkdAeMNYr8R+SnV9lChoBmgJaA9DCMk6HF2lalPAlIaUUpRoFUtzaBZHQHjDhiG34Kx1fZQoaAZoCWgPQwj8471qZaRHwJSGlFKUaBVLcGgWR0B4xA46wMYudX2UKGgGaAloD0MIJcreUs69UcCUhpRSlGgVS0poFkdAeMRq//NqxnV9lChoBmgJaA9DCAK37uapIFHAlIaUUpRoFUtmaBZHQHjEuso2GZh1fZQoaAZoCWgPQwhubeF5qaA2wJSGlFKUaBVLgmgWR0B4xO1kUbkwdX2UKGgGaAloD0MIYHglyXMUU8CUhpRSlGgVS4doFkdAeMVOAy2x6nV9lChoBmgJaA9DCG0BofXwK1rAlIaUUpRoFUtkaBZHQHjF71Iy0rt1fZQoaAZoCWgPQwjH8UOlEcMfQJSGlFKUaBVLWWgWR0B4xnd0q6OHdX2UKGgGaAloD0MI2/tUFRpMOMCUhpRSlGgVS4VoFkdAeMfnUUfxMHV9lChoBmgJaA9DCNrLttPWYCTAlIaUUpRoFUuVaBZHQHjIII0IkZ91fZQoaAZoCWgPQwippbkVwgoVwJSGlFKUaBVLXGgWR0B4yE6S1Vo6dX2UKGgGaAloD0MIvt798V4VAECUhpRSlGgVS5poFkdAeMjB8QZn+XV9lChoBmgJaA9DCN3qOel9ay3AlIaUUpRoFUtjaBZHQHjJSb2Dg651fZQoaAZoCWgPQwjQmEnUizdjwJSGlFKUaBVLcGgWR0B4yhU83dbgdX2UKGgGaAloD0MICf8iaMxgQcCUhpRSlGgVS3JoFkdAeMpfukUKzHV9lChoBmgJaA9DCE9d+SzPc0zAlIaUUpRoFUtKaBZHQHjLHHvMKTl1fZQoaAZoCWgPQwiN8PYgBCwiwJSGlFKUaBVLd2gWR0B4zAN+b3GodX2UKGgGaAloD0MIXB0AcVdjTsCUhpRSlGgVS35oFkdAeMwjB2wFDHV9lChoBmgJaA9DCGmKAKd3Xl7AlIaUUpRoFUt2aBZHQHjMMfV7QcB1fZQoaAZoCWgPQwjPL0rQX/lRwJSGlFKUaBVLa2gWR0B4zJrEcbR4dX2UKGgGaAloD0MI7QvohTt9V8CUhpRSlGgVS6ZoFkdAeMzHpbD/EXV9lChoBmgJaA9DCKQzMPKyJkLAlIaUUpRoFUuqaBZHQHjNDVtoBaN1fZQoaAZoCWgPQwhzvALRk8oywJSGlFKUaBVLUGgWR0B4zbWMCLdfdX2UKGgGaAloD0MIAkaXN4c5ScCUhpRSlGgVS5JoFkdAeM4wPiDM/3V9lChoBmgJaA9DCFZ/hGHAH1TAlIaUUpRoFUtfaBZHQHjPCPZIxxl1fZQoaAZoCWgPQwghrweT4gFCwJSGlFKUaBVLdWgWR0B4z0rf+CK8dX2UKGgGaAloD0MInrXbLjQXQsCUhpRSlGgVS25oFkdAeNDSNOuaF3V9lChoBmgJaA9DCONw5ldzrErAlIaUUpRoFUtQaBZHQHjSFByCFsZ1fZQoaAZoCWgPQwiWsgxxrOVKwJSGlFKUaBVLomgWR0B40iNaQmu1dX2UKGgGaAloD0MId4GSAgvAIMCUhpRSlGgVS51oFkdAeNI+dsi0OXV9lChoBmgJaA9DCC/6CtKMv0LAlIaUUpRoFUtjaBZHQHjSZljEvTR1fZQoaAZoCWgPQwiPAG4WL047wJSGlFKUaBVLXWgWR0B40oBdUsFudX2UKGgGaAloD0MICJEMObYoTcCUhpRSlGgVS3hoFkdAeNK4fOlfq3V9lChoBmgJaA9DCEW5NH7hN0/AlIaUUpRoFUtlaBZHQHjSm9L6DXh1fZQoaAZoCWgPQwjUSba6nHJBwJSGlFKUaBVLTWgWR0B40r4fwI+odX2UKGgGaAloD0MIrADfbd5FUcCUhpRSlGgVS2hoFkdAeNNedTYNAnV9lChoBmgJaA9DCM8Tz9kCRjvAlIaUUpRoFUuhaBZHQHjUjbWVeKN1fZQoaAZoCWgPQwjbMXVXdvkkwJSGlFKUaBVLjmgWR0B41PlRxcVydX2UKGgGaAloD0MIxJRIopfZOMCUhpRSlGgVS09oFkdAeNX7di2Dx3V9lChoBmgJaA9DCP1oOGVuGVbAlIaUUpRoFUtxaBZHQHjWXpbD/ER1fZQoaAZoCWgPQwiOk8K8x5hXwJSGlFKUaBVLhmgWR0B41tDF6zE8dX2UKGgGaAloD0MII7w9CAGgUsCUhpRSlGgVS4VoFkdAeNf4rBj4H3V9lChoBmgJaA9DCFmLTwEwdlDAlIaUUpRoFUtaaBZHQHjZLYbsF+x1fZQoaAZoCWgPQwhTIoleRmFHwJSGlFKUaBVLaWgWR0B42Zj9XLeRdX2UKGgGaAloD0MIwmuXNhx6TMCUhpRSlGgVS21oFkdAeNmX+VC5VnV9lChoBmgJaA9DCLJkjuVdb0fAlIaUUpRoFUt6aBZHQHjanmV7hNx1fZQoaAZoCWgPQwjRBfUtc74ywJSGlFKUaBVLf2gWR0B42rrRjSXudX2UKGgGaAloD0MIU8vW+iKUU8CUhpRSlGgVS0poFkdAeNswB5ooNXV9lChoBmgJaA9DCBwmGqTgw0rAlIaUUpRoFUuIaBZHQHjbsa4tpVV1fZQoaAZoCWgPQwjmlettMzk4wJSGlFKUaBVLYGgWR0B43byauwHJdX2UKGgGaAloD0MIWOTXDzGSYcCUhpRSlGgVS6poFkdAeN3GZuyeI3V9lChoBmgJaA9DCN53DI/97DnAlIaUUpRoFUumaBZHQHjeIInjQzF1fZQoaAZoCWgPQwjvqgfMQ7pAwJSGlFKUaBVLtWgWR0B43pH09QoDdX2UKGgGaAloD0MIXoB9dOraR8CUhpRSlGgVS45oFkdAeN6NcnmaIHV9lChoBmgJaA9DCG3lJf+TnxNAlIaUUpRoFUtzaBZHQHjesO5J9Rd1fZQoaAZoCWgPQwimmIOgo1tCwJSGlFKUaBVLlmgWR0B435KHwgDBdX2UKGgGaAloD0MI+7DeqBWkQ8CUhpRSlGgVS15oFkdAeOB6F/QSjHV9lChoBmgJaA9DCF69iowO01TAlIaUUpRoFUt0aBZHQHjhyI55qud1fZQoaAZoCWgPQwgTZW8p5/tMwJSGlFKUaBVLZmgWR0B44q3c580DdX2UKGgGaAloD0MIUkgyq3eIEkCUhpRSlGgVS11oFkdAeOKWXkYGdXV9lChoBmgJaA9DCMzR4/c2J0/AlIaUUpRoFUuiaBZHQHjj7DEWIoF1fZQoaAZoCWgPQwirIAa69uEzwJSGlFKUaBVLWWgWR0B45FfNRm9QdX2UKGgGaAloD0MIzSN/MPBkKMCUhpRSlGgVS5poFkdAeOTjpcHGCXV9lChoBmgJaA9DCP35tmCpgVbAlIaUUpRoFUuMaBZHQHjlCauwHJN1fZQoaAZoCWgPQwg6zm3CvT5ZwJSGlFKUaBVLYGgWR0B45Y/6fra/dX2UKGgGaAloD0MIk+LjE7J1QcCUhpRSlGgVS5xoFkdAeOYSowVTJnV9lChoBmgJaA9DCLUZpyGqlkrAlIaUUpRoFUtBaBZHQHjmkQoTfzl1fZQoaAZoCWgPQwgkfzDw3PBVwJSGlFKUaBVLeWgWR0B45qVrylN2dX2UKGgGaAloD0MIGmmpvB1yVMCUhpRSlGgVS3FoFkdAeObbo8p1BHV9lChoBmgJaA9DCP8+48KBo1TAlIaUUpRoFUtpaBZHQHjnVfAsTWZ1fZQoaAZoCWgPQwhbfXVVoGY6wJSGlFKUaBVLi2gWR0B46NK6FuejdX2UKGgGaAloD0MIsTBETl/HQMCUhpRSlGgVS3RoFkdAeOj+z+m3v3V9lChoBmgJaA9DCNV5VPzfYRFAlIaUUpRoFUuUaBZHQHjo95Y5ksl1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 32,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24ba23e87ac0b19e6ec5f14ecbce4dbe7756332e2ca945da195a9ab22b84d083
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:580a6bca11bcc11e7516dcb3f06069871a4d64f800daa22e33ba68291150769b
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (264 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -230.45554200787447, "std_reward": 19.704153929554053, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-17T03:47:27.401842"}
|