Update README.md
Browse files
README.md
CHANGED
@@ -52,15 +52,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
52 |
# Preprocessing the datasets.
|
53 |
# We need to read the aduio files as arrays
|
54 |
def speech_file_to_array_fn(batch):
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
60 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
61 |
|
62 |
with torch.no_grad():
|
63 |
-
|
64 |
|
65 |
predicted_ids = torch.argmax(logits, dim=-1)
|
66 |
|
@@ -94,37 +94,37 @@ processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-punjabi")
|
|
94 |
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-punjabi")
|
95 |
model.to("cuda")
|
96 |
|
97 |
-
chars_to_ignore_regex = '[
|
98 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
99 |
|
100 |
# Preprocessing the datasets.
|
101 |
# We need to read the aduio files as arrays
|
102 |
def speech_file_to_array_fn(batch):
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
|
108 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
109 |
|
110 |
# Preprocessing the datasets.
|
111 |
# We need to read the aduio files as arrays
|
112 |
def evaluate(batch):
|
113 |
-
|
114 |
|
115 |
-
|
116 |
-
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
|
122 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
123 |
|
124 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
125 |
```
|
126 |
|
127 |
-
**Test Result**: 58.
|
128 |
|
129 |
|
130 |
## Training
|
|
|
52 |
# Preprocessing the datasets.
|
53 |
# We need to read the aduio files as arrays
|
54 |
def speech_file_to_array_fn(batch):
|
55 |
+
\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
56 |
+
\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
57 |
+
\\\\treturn batch
|
58 |
|
59 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
60 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
61 |
|
62 |
with torch.no_grad():
|
63 |
+
\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
64 |
|
65 |
predicted_ids = torch.argmax(logits, dim=-1)
|
66 |
|
|
|
94 |
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-punjabi")
|
95 |
model.to("cuda")
|
96 |
|
97 |
+
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“]' # TODO: adapt this list to include all special characters you removed from the data
|
98 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
99 |
|
100 |
# Preprocessing the datasets.
|
101 |
# We need to read the aduio files as arrays
|
102 |
def speech_file_to_array_fn(batch):
|
103 |
+
\\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
104 |
+
\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
105 |
+
\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
106 |
+
\\\\\\\\treturn batch
|
107 |
|
108 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
109 |
|
110 |
# Preprocessing the datasets.
|
111 |
# We need to read the aduio files as arrays
|
112 |
def evaluate(batch):
|
113 |
+
\\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
114 |
|
115 |
+
\\\\\\\\twith torch.no_grad():
|
116 |
+
\\\\\\\\t\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
117 |
|
118 |
+
\\\\\\\\tpred_ids = torch.argmax(logits, dim=-1)
|
119 |
+
\\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
120 |
+
\\\\\\\\treturn batch
|
121 |
|
122 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
123 |
|
124 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
125 |
```
|
126 |
|
127 |
+
**Test Result**: 58.05 %
|
128 |
|
129 |
|
130 |
## Training
|