library_name: transformers | |
license: mit | |
base_model: microsoft/mdeberta-v3-base | |
tags: | |
- generated_from_trainer | |
metrics: | |
- precision | |
- recall | |
- f1 | |
- accuracy | |
model-index: | |
- name: piiranha-gretelai-test | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# piiranha-gretelai-test | |
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on an unknown dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.1008 | |
- Precision: 0.6935 | |
- Recall: 0.7739 | |
- F1: 0.7315 | |
- Accuracy: 0.9695 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 5e-05 | |
- train_batch_size: 64 | |
- eval_batch_size: 64 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- lr_scheduler_warmup_ratio: 0.05 | |
- num_epochs: 1 | |
- mixed_precision_training: Native AMP | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | | |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | |
| 0.1561 | 0.3342 | 250 | 0.1173 | 0.6640 | 0.7056 | 0.6842 | 0.9655 | | |
| 0.102 | 0.6684 | 500 | 0.1009 | 0.6870 | 0.7693 | 0.7258 | 0.9687 | | |
### Framework versions | |
- Transformers 4.44.2 | |
- Pytorch 2.4.1+cu121 | |
- Datasets 3.0.1 | |
- Tokenizers 0.19.1 | |