--- language: - en thumbnail: "url to a thumbnail used in social sharing" tags: - instruct - openhermes - tinyllama license: apache-2.0 datasets: - teknium/openhermes metrics: - metric1 - metric2 base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T --- ## TinyLlama 1.1B Instruct 3T TinyLlama Instruct This is the 3T base model trained on openhermes instruct dataset for 4 epochs. It is intended to be used for further finetuning. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) ## axolotl config file: lora.yml ```yaml base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: true load_in_4bit: false strict: false datasets: - path: teknium/openhermes type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./tiny-llama-instruct-lora sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```