File size: 4,638 Bytes
e6961e1
 
8b4f6a3
 
e6961e1
 
 
 
 
 
 
 
 
 
 
8b4f6a3
e6961e1
 
8b4f6a3
e6961e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
tags:
- automatic-speech-recognition
- gary109/AI_Light_Dance
- generated_from_trainer
model-index:
- name: ai-light-dance_singing6_ft_wav2vec2-large-xlsr-53-5gram-v4-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ai-light-dance_singing6_ft_wav2vec2-large-xlsr-53-5gram-v4-2

This model is a fine-tuned version of [gary109/ai-light-dance_singing4_ft_wav2vec2-large-xlsr-53-5gram-v4-2](https://huggingface.co/gary109/ai-light-dance_singing4_ft_wav2vec2-large-xlsr-53-5gram-v4-2) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING6 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1803
- Wer: 0.0981

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 50.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.6742        | 1.0   | 171  | 0.2202          | 0.1309 |
| 0.6303        | 2.0   | 342  | 0.2230          | 0.1305 |
| 0.6036        | 3.0   | 513  | 0.1992          | 0.1087 |
| 0.6224        | 4.0   | 684  | 0.2169          | 0.1221 |
| 0.5761        | 5.0   | 855  | 0.2380          | 0.1452 |
| 0.5694        | 6.0   | 1026 | 0.2175          | 0.1233 |
| 0.5753        | 7.0   | 1197 | 0.2028          | 0.1085 |
| 0.5503        | 8.0   | 1368 | 0.2122          | 0.1193 |
| 0.5322        | 9.0   | 1539 | 0.2042          | 0.1170 |
| 0.6088        | 10.0  | 1710 | 0.2084          | 0.1157 |
| 0.561         | 11.0  | 1881 | 0.2091          | 0.1137 |
| 0.5319        | 12.0  | 2052 | 0.1959          | 0.1091 |
| 0.5272        | 13.0  | 2223 | 0.2109          | 0.1176 |
| 0.5102        | 14.0  | 2394 | 0.2037          | 0.1131 |
| 0.5401        | 15.0  | 2565 | 0.2039          | 0.1151 |
| 0.5146        | 16.0  | 2736 | 0.2046          | 0.1132 |
| 0.5316        | 17.0  | 2907 | 0.2135          | 0.1197 |
| 0.5099        | 18.0  | 3078 | 0.2059          | 0.1109 |
| 0.5391        | 19.0  | 3249 | 0.2007          | 0.1118 |
| 0.5323        | 20.0  | 3420 | 0.1973          | 0.1049 |
| 0.5253        | 21.0  | 3591 | 0.1938          | 0.1058 |
| 0.5016        | 22.0  | 3762 | 0.2034          | 0.1126 |
| 0.4687        | 23.0  | 3933 | 0.2016          | 0.1127 |
| 0.4843        | 24.0  | 4104 | 0.2009          | 0.1119 |
| 0.4889        | 25.0  | 4275 | 0.1903          | 0.1025 |
| 0.5106        | 26.0  | 4446 | 0.1940          | 0.1072 |
| 0.4861        | 27.0  | 4617 | 0.1854          | 0.1012 |
| 0.4883        | 28.0  | 4788 | 0.1880          | 0.1018 |
| 0.4805        | 29.0  | 4959 | 0.1956          | 0.1052 |
| 0.4905        | 30.0  | 5130 | 0.1964          | 0.1055 |
| 0.4776        | 31.0  | 5301 | 0.1865          | 0.1000 |
| 0.496         | 32.0  | 5472 | 0.1900          | 0.1029 |
| 0.4634        | 33.0  | 5643 | 0.1886          | 0.1005 |
| 0.4596        | 34.0  | 5814 | 0.1858          | 0.1014 |
| 0.4709        | 35.0  | 5985 | 0.1877          | 0.1033 |
| 0.4576        | 36.0  | 6156 | 0.1910          | 0.1045 |
| 0.4928        | 37.0  | 6327 | 0.1835          | 0.1018 |
| 0.4585        | 38.0  | 6498 | 0.1857          | 0.0999 |
| 0.4613        | 39.0  | 6669 | 0.1874          | 0.1036 |
| 0.4759        | 40.0  | 6840 | 0.1858          | 0.1019 |
| 0.4681        | 41.0  | 7011 | 0.1830          | 0.0991 |
| 0.4603        | 42.0  | 7182 | 0.1869          | 0.1003 |
| 0.456         | 43.0  | 7353 | 0.1809          | 0.0980 |
| 0.4628        | 44.0  | 7524 | 0.1840          | 0.0996 |
| 0.4391        | 45.0  | 7695 | 0.1814          | 0.0960 |
| 0.4372        | 46.0  | 7866 | 0.1817          | 0.0976 |
| 0.4542        | 47.0  | 8037 | 0.1816          | 0.0994 |
| 0.4495        | 48.0  | 8208 | 0.1819          | 0.0988 |
| 0.4182        | 49.0  | 8379 | 0.1803          | 0.0981 |
| 0.454         | 50.0  | 8550 | 0.1803          | 0.0993 |


### Framework versions

- Transformers 4.21.0.dev0
- Pytorch 1.9.1+cu102
- Datasets 2.3.3.dev0
- Tokenizers 0.12.1