gayanin commited on
Commit
7f98ace
1 Parent(s): ff32082

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: med_masked_pubmed_articles_biogpt_large
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # med_masked_pubmed_articles_biogpt_large
14
+
15
+ This model is a fine-tuned version of [microsoft/BioGPT-Large-PubMedQA](https://huggingface.co/microsoft/BioGPT-Large-PubMedQA) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 3.2545
18
+ - Rouge2 Precision: 0.7011
19
+ - Rouge2 Recall: 0.6931
20
+ - Rouge2 Fmeasure: 0.6959
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 2e-05
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 16
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 10
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
51
+ |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
52
+ | 3.0566 | 1.0 | 7914 | 3.0375 | 0.7013 | 0.6931 | 0.6959 |
53
+ | 2.911 | 2.0 | 15828 | 3.0228 | 0.7013 | 0.6931 | 0.6959 |
54
+ | 2.7386 | 3.0 | 23742 | 3.0594 | 0.7011 | 0.6931 | 0.6959 |
55
+ | 2.5718 | 4.0 | 31656 | 3.1371 | 0.7011 | 0.6931 | 0.6959 |
56
+ | 2.4573 | 5.0 | 39570 | 3.2545 | 0.7011 | 0.6931 | 0.6959 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.26.1
62
+ - Pytorch 1.13.1+cu116
63
+ - Datasets 2.9.0
64
+ - Tokenizers 0.13.2