--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: my_awesome_food_model results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.9 --- # my_awesome_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.8834 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.6073 | 0.99 | 62 | 3.3725 | 0.818 | | 2.2956 | 2.0 | 125 | 2.1579 | 0.854 | | 1.7042 | 2.99 | 187 | 1.6201 | 0.887 | | 1.3278 | 4.0 | 250 | 1.3513 | 0.89 | | 1.1314 | 4.99 | 312 | 1.1549 | 0.908 | | 1.007 | 6.0 | 375 | 1.0737 | 0.889 | | 0.905 | 6.99 | 437 | 0.9600 | 0.906 | | 0.8227 | 8.0 | 500 | 0.9113 | 0.912 | | 0.7948 | 8.99 | 562 | 0.8908 | 0.909 | | 0.7598 | 9.92 | 620 | 0.8834 | 0.9 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3