--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert-base-cased-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8602941176470589 - name: F1 type: f1 value: 0.9025641025641027 --- # bert-base-cased-finetuned-mrpc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.7132 - Accuracy: 0.8603 - F1: 0.9026 - Combined Score: 0.8814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \ --model_name_or_path bert-base-cased \ --task_name mrpc \ --do_train \ --do_eval \ --max_seq_length 512 \ --per_device_train_batch_size 16 \ --learning_rate 2e-5 \ --num_train_epochs 5 \ --output_dir bert-base-cased-finetuned-mrpc \ --push_to_hub \ --hub_strategy all_checkpoints \ --logging_strategy epoch \ --save_strategy epoch \ --evaluation_strategy epoch \ ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.5981 | 1.0 | 230 | 0.4580 | 0.7892 | 0.8562 | 0.8227 | | 0.3739 | 2.0 | 460 | 0.3806 | 0.8480 | 0.8942 | 0.8711 | | 0.1991 | 3.0 | 690 | 0.4879 | 0.8529 | 0.8958 | 0.8744 | | 0.1286 | 4.0 | 920 | 0.6342 | 0.8529 | 0.8986 | 0.8758 | | 0.0812 | 5.0 | 1150 | 0.7132 | 0.8603 | 0.9026 | 0.8814 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3