File size: 3,021 Bytes
886beea d00e5ee 886beea d00e5ee 886beea d00e5ee 886beea 54a5edb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: deit-small-patch16-224-finetuned-piid
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: val
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7945205479452054
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deit-small-patch16-224-finetuned-piid
This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5615
- Accuracy: 0.7945
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1803 | 0.98 | 20 | 1.0233 | 0.5753 |
| 0.706 | 2.0 | 41 | 0.7299 | 0.7078 |
| 0.6016 | 2.98 | 61 | 0.6877 | 0.7123 |
| 0.4903 | 4.0 | 82 | 0.6139 | 0.7671 |
| 0.4692 | 4.98 | 102 | 0.5667 | 0.7626 |
| 0.374 | 6.0 | 123 | 0.5146 | 0.8037 |
| 0.2995 | 6.98 | 143 | 0.5596 | 0.7534 |
| 0.2905 | 8.0 | 164 | 0.5313 | 0.7534 |
| 0.2612 | 8.98 | 184 | 0.5328 | 0.7900 |
| 0.2499 | 10.0 | 205 | 0.5369 | 0.7991 |
| 0.185 | 10.98 | 225 | 0.5754 | 0.7808 |
| 0.1927 | 12.0 | 246 | 0.5886 | 0.7717 |
| 0.1446 | 12.98 | 266 | 0.5160 | 0.7991 |
| 0.155 | 14.0 | 287 | 0.5353 | 0.8082 |
| 0.1577 | 14.98 | 307 | 0.5848 | 0.7808 |
| 0.1243 | 16.0 | 328 | 0.5572 | 0.7991 |
| 0.1038 | 16.98 | 348 | 0.5859 | 0.7763 |
| 0.1305 | 18.0 | 369 | 0.5752 | 0.7900 |
| 0.0868 | 18.98 | 389 | 0.5616 | 0.8037 |
| 0.1364 | 19.51 | 400 | 0.5615 | 0.7945 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|