gcperk20's picture
Model save
7c65f24
metadata
license: apache-2.0
base_model: microsoft/swin-base-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-base-patch4-window7-224-finetuned-piid
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: val
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8127853881278538

swin-base-patch4-window7-224-finetuned-piid

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6630
  • Accuracy: 0.8128

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1815 0.98 20 1.0441 0.5251
0.6548 2.0 41 0.8150 0.6393
0.6083 2.98 61 0.6395 0.6986
0.4925 4.0 82 0.6273 0.6804
0.4448 4.98 102 0.4812 0.8174
0.3387 6.0 123 0.5868 0.7945
0.2622 6.98 143 0.7868 0.7260
0.2656 8.0 164 0.4432 0.8128
0.2259 8.98 184 0.6553 0.7489
0.1997 10.0 205 0.5143 0.7854
0.1892 10.98 225 0.5657 0.7945
0.1522 12.0 246 0.7339 0.7580
0.1309 12.98 266 0.6064 0.8174
0.1482 14.0 287 0.5875 0.8128
0.1459 14.98 307 0.6443 0.7900
0.1224 16.0 328 0.6521 0.8037
0.0533 16.98 348 0.5915 0.8493
0.1133 18.0 369 0.6152 0.8265
0.0923 18.98 389 0.6819 0.7854
0.086 19.51 400 0.6630 0.8128

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1