LunarLander-v2 by PPO
Browse files- LunarLanderPPO.zip +2 -2
- LunarLanderPPO/data +23 -23
- LunarLanderPPO/policy.optimizer.pth +2 -2
- LunarLanderPPO/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
LunarLanderPPO.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54543c72f5960a62d36294c6b8c4582ba4ef636fbbb3fbd18baf1944e64d78e2
|
3 |
+
size 147551
|
LunarLanderPPO/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -43,12 +43,12 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,24 +67,24 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
-
"n_steps":
|
81 |
-
"gamma": 0.
|
82 |
"gae_lambda": 0.95,
|
83 |
"ent_coef": 0.0,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2f1d343940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2f1d3439d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2f1d343a60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2f1d343af0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2f1d343b80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2f1d343c10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2f1d343ca0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2f1d343d30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2f1d343dc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2f1d343e50>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2f1d343ee0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2f1d343f70>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f2f1d3406c0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 2015232,
|
47 |
+
"_total_timesteps": 2000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1677768313569170092,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALP8ab0P0ZY/VgAiO78bqb5YIkG9flU+PQAAAAAAAAAAjQyTPuJWej9yQ94+qsmfvrJXgD4Zmas8AAAAAAAAAAAA8py9XHsVun7nlroh5SC2Ef2COqGCsDkAAAAAAAAAAACNvj7PUiE/T1YwvTT5hL6m3vc9ppmOvQAAAAAAAAAAcw0NPuxU3bsF9Ou6Z6JlOXp7Kb0KsVc6AAAAAAAAgD9zsfI9+FqdPNVfX74kGj++/EqavChWyDwAAAAAAAAAAM08TTusHM0+wFDhOxrwbr6APHA8Y0gdvAAAAAAAAAAAZiCWvSxfjj/Ta188/02cvkgML736ggA9AAAAAAAAAAANVYw98aewP+pDBz+CR4W+vCs2PXIvaz4AAAAAAAAAADM50r2Wcr0/jeoOvwgUA70drPq9AnqXvgAAAAAAAAAAZsBlPRkpfj+id9Y8j7aUvjeioTx/j608AAAAAAAAAADzp4E9MbJsPtI4dr2rF0O+Js4BPd2SNr0AAAAAAAAAAM3YqTt5Ob0/cKFIPMuk/b3/6um8+wzpPAAAAAAAAAAAwIufvd05Ij4egM09FIsuvtIVLzxZfpe8AAAAAAAAAAB97qc+6uUDPxh4mr7RLz++XEz1PIi/YL0AAAAAAAAAAM2eOD0tpgY/M3LCvAwsh75k6Xk8dklBvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.007616000000000067,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIEHxY0zsb0CUhpRSlIwBbJRNTAGMAXSUR0Ci6mwxvegtdX2UKGgGaAloD0MIg04IHXSYbUCUhpRSlGgVTUIBaBZHQKLrt3ztkWh1fZQoaAZoCWgPQwjX2vtUVSZyQJSGlFKUaBVNXAFoFkdAouvp3xFy73V9lChoBmgJaA9DCMPX17rUQHBAlIaUUpRoFU1ZAWgWR0Ci+kHBciW3dX2UKGgGaAloD0MIN/qYDwjtbUCUhpRSlGgVTSYBaBZHQKL6lcYZVGV1fZQoaAZoCWgPQwj1L0llioFxQJSGlFKUaBVNWwFoFkdAovrePo3aSXV9lChoBmgJaA9DCDRkPErlU3FAlIaUUpRoFU1TAWgWR0Ci+wdkrf+CdX2UKGgGaAloD0MIv0nToCjXckCUhpRSlGgVTVUBaBZHQKL7dDfFaSt1fZQoaAZoCWgPQwiiJCTSNihwQJSGlFKUaBVNRwFoFkdAovvEc0cfeXV9lChoBmgJaA9DCN7GZkdq6nBAlIaUUpRoFU0qAWgWR0Ci+9sZYPoWdX2UKGgGaAloD0MIcRsN4K0fcUCUhpRSlGgVTSMBaBZHQKL8OpEx7At1fZQoaAZoCWgPQwhkP4ulyGhjQJSGlFKUaBVN6ANoFkdAovw63uuzQnV9lChoBmgJaA9DCM9pFmi3QHFAlIaUUpRoFU1HAWgWR0Ci/Gj5CWu6dX2UKGgGaAloD0MIGsHG9W9fcECUhpRSlGgVTVEBaBZHQKL9V0HQhOh1fZQoaAZoCWgPQwj1K50PTxJwQJSGlFKUaBVNLwFoFkdAov2UYbbUPXV9lChoBmgJaA9DCJXyWgndv3BAlIaUUpRoFU0zAWgWR0Ci/br8aXKKdX2UKGgGaAloD0MIISI17WKVbkCUhpRSlGgVTTUBaBZHQKL+f/QSi/R1fZQoaAZoCWgPQwhY5q26jgBuQJSGlFKUaBVNMQFoFkdAov6LpX6qKnV9lChoBmgJaA9DCLjJqDKMpW9AlIaUUpRoFU1FAWgWR0Ci/73PAwfydX2UKGgGaAloD0MID7qEQ2/ocECUhpRSlGgVTV8BaBZHQKL/39GZuyh1fZQoaAZoCWgPQwg+6q9X2MlxQJSGlFKUaBVNRAFoFkdAowAErd30PHV9lChoBmgJaA9DCN9PjZduTW5AlIaUUpRoFU1NAWgWR0CjAFfsu3+ddX2UKGgGaAloD0MIqDXNO462cECUhpRSlGgVTSQBaBZHQKMAY66reZZ1fZQoaAZoCWgPQwh8tg4OdtJxQJSGlFKUaBVNPAFoFkdAowB7RBu4w3V9lChoBmgJaA9DCI6yfjMx8HFAlIaUUpRoFU1IAWgWR0CjAQaDf3vhdX2UKGgGaAloD0MIBOj3/RvxcUCUhpRSlGgVTTkBaBZHQKMBKxL0z0p1fZQoaAZoCWgPQwiz7Elgc2tvQJSGlFKUaBVNNgFoFkdAowFaSFGoaXV9lChoBmgJaA9DCL9jeOyn6XBAlIaUUpRoFU1oAWgWR0CjAdhCUorndX2UKGgGaAloD0MI+tAF9W27cECUhpRSlGgVTSwBaBZHQKMCIr/bTMJ1fZQoaAZoCWgPQwgaGk8EMbJyQJSGlFKUaBVNMAFoFkdAowJtCqp97XV9lChoBmgJaA9DCHeC/dc5A2tAlIaUUpRoFU1CAWgWR0CjAuFCCz1LdX2UKGgGaAloD0MIbatZZzy4cECUhpRSlGgVTS8BaBZHQKMDYnF5v991fZQoaAZoCWgPQwiHFtnOt/BwQJSGlFKUaBVNNgFoFkdAowOKrtE5Q3V9lChoBmgJaA9DCBqLprMTNm5AlIaUUpRoFU0oAWgWR0CjBLhvze41dX2UKGgGaAloD0MIsJC5MqgOcECUhpRSlGgVTScBaBZHQKME38AJb+t1fZQoaAZoCWgPQwhxOzQsRjpxQJSGlFKUaBVNTwFoFkdAowYl1MdtEXV9lChoBmgJaA9DCOza3m5JAm9AlIaUUpRoFU00AWgWR0CjBi7y6MBIdX2UKGgGaAloD0MIwCSVKeY/cECUhpRSlGgVTUkBaBZHQKMGj43WFvh1fZQoaAZoCWgPQwhUGcbdIN5vQJSGlFKUaBVNVgFoFkdAowbO+wkgOnV9lChoBmgJaA9DCMfXnlmSSHFAlIaUUpRoFU0kAWgWR0CjBuFuFYdRdX2UKGgGaAloD0MIs+xJYHOUbUCUhpRSlGgVTTsBaBZHQKMHMWi1y/91fZQoaAZoCWgPQwggQfFjDDNxQJSGlFKUaBVNNAFoFkdAowd7FOwgT3V9lChoBmgJaA9DCP8G7dVHU3FAlIaUUpRoFU04AWgWR0CjCFK6e5FxdX2UKGgGaAloD0MItHdGWxVGb0CUhpRSlGgVTTUBaBZHQKMIt5C4SYh1fZQoaAZoCWgPQwgZHvtZbKhwQJSGlFKUaBVNMwFoFkdAowkc0zj3mHV9lChoBmgJaA9DCBAEyNDxRnBAlIaUUpRoFU0tAWgWR0CjCpdPk7wKdX2UKGgGaAloD0MIE5z6QHJbb0CUhpRSlGgVTVkBaBZHQKMKqpKjBVN1fZQoaAZoCWgPQwjAzHfwE91hQJSGlFKUaBVN6ANoFkdAowrYqPOpsHV9lChoBmgJaA9DCFrXaDlQi3BAlIaUUpRoFU01AWgWR0CjDA6Xa8HwdX2UKGgGaAloD0MI38FPHMD5bECUhpRSlGgVTY0BaBZHQKMMs9HMEA51fZQoaAZoCWgPQwjZeoZwDB5wQJSGlFKUaBVNKwFoFkdAow0zhWHUMHV9lChoBmgJaA9DCD1FDhE3bG9AlIaUUpRoFU05AWgWR0CjGmmCI1tPdX2UKGgGaAloD0MIR1Sobi5ub0CUhpRSlGgVTUcBaBZHQKMafRP420l1fZQoaAZoCWgPQwii8Nk6+J5wQJSGlFKUaBVNWQFoFkdAoxqKOWBz3nV9lChoBmgJaA9DCNTRcTVydnFAlIaUUpRoFU1BAWgWR0CjGppfQa73dX2UKGgGaAloD0MIFMstrQaLbUCUhpRSlGgVTT0BaBZHQKMawCZnctZ1fZQoaAZoCWgPQwjDSC9q9zNvQJSGlFKUaBVNOQFoFkdAoxrgqEvkBHV9lChoBmgJaA9DCISfOID+GW9AlIaUUpRoFU00AWgWR0CjG11+I/JOdX2UKGgGaAloD0MIk6zD0VUlcUCUhpRSlGgVTVUBaBZHQKMcKrZrYXh1fZQoaAZoCWgPQwjp0VRP5g1wQJSGlFKUaBVNVQFoFkdAoxx21MM7VHV9lChoBmgJaA9DCBMoYhHDlG5AlIaUUpRoFU0rAWgWR0CjHOC79Q40dX2UKGgGaAloD0MIfQiqRi+ra0CUhpRSlGgVTT8BaBZHQKMdWAFPi1l1fZQoaAZoCWgPQwhmg0wyckNwQJSGlFKUaBVNTAFoFkdAox1ga72+PHV9lChoBmgJaA9DCFzlCYQdEXFAlIaUUpRoFU0zAWgWR0CjHfo5YHPedX2UKGgGaAloD0MITiZuFYRrcECUhpRSlGgVTT8BaBZHQKMenonrpq11fZQoaAZoCWgPQwj2tpkKsb1xQJSGlFKUaBVNTQFoFkdAox8/TCtRvXV9lChoBmgJaA9DCMy3Pqw3UG1AlIaUUpRoFU0uAWgWR0CjH2iVKPGRdX2UKGgGaAloD0MIIZIhx1a4bECUhpRSlGgVTS8BaBZHQKMfjcLSeAd1fZQoaAZoCWgPQwiBzTl45tVwQJSGlFKUaBVNOAFoFkdAox+l5prULHV9lChoBmgJaA9DCPTfg9cutW1AlIaUUpRoFU0+AWgWR0CjH9Mb3oLYdX2UKGgGaAloD0MIh2wgXWwRbkCUhpRSlGgVTS4BaBZHQKMf3jUd7v51fZQoaAZoCWgPQwizXDY6JyxyQJSGlFKUaBVNTAFoFkdAoyAeX3QD3nV9lChoBmgJaA9DCKPJxRiYf3JAlIaUUpRoFU06AWgWR0CjIT8pTdcjdX2UKGgGaAloD0MITwRxHs5ta0CUhpRSlGgVTToBaBZHQKMhqMrmQsB1fZQoaAZoCWgPQwgLe9rhLyJtQJSGlFKUaBVNPQFoFkdAoyJLPjXFtXV9lChoBmgJaA9DCNPAj2rY5nBAlIaUUpRoFU0qAWgWR0CjIn/hVENOdX2UKGgGaAloD0MIxoZu9gdabUCUhpRSlGgVTS0BaBZHQKMimj9n9Nx1fZQoaAZoCWgPQwhUVz7L83NuQJSGlFKUaBVNSwFoFkdAoyQPtD2JznV9lChoBmgJaA9DCCPajqk7Bm5AlIaUUpRoFU0vAWgWR0CjJETvAoG6dX2UKGgGaAloD0MIxcn9DkXxYUCUhpRSlGgVTegDaBZHQKMle2R7qpt1fZQoaAZoCWgPQwgVHF4QEY5tQJSGlFKUaBVNKwFoFkdAoyWK1JDmbXV9lChoBmgJaA9DCMSWHk31yG5AlIaUUpRoFU0wAWgWR0CjJhPVVghKdX2UKGgGaAloD0MIveR/8rdTcUCUhpRSlGgVTVMBaBZHQKMmNGaQV9F1fZQoaAZoCWgPQwih20sao4ZwQJSGlFKUaBVNUgFoFkdAoyZfhS9/SnV9lChoBmgJaA9DCCpWDcJczmtAlIaUUpRoFU05AWgWR0CjJsw8fV7QdX2UKGgGaAloD0MI5Pih0gi2cUCUhpRSlGgVTVkBaBZHQKMm+9Iwudx1fZQoaAZoCWgPQwgziA/s+B9yQJSGlFKUaBVNOAFoFkdAoyiM4gieNHV9lChoBmgJaA9DCNR9AFKbeXBAlIaUUpRoFU0nAWgWR0CjKUFeOXE7dX2UKGgGaAloD0MIp11MM12IckCUhpRSlGgVTVkBaBZHQKMp0wJw84h1fZQoaAZoCWgPQwg3NdB8DgdwQJSGlFKUaBVNPQFoFkdAoyoLOoo/inV9lChoBmgJaA9DCIFaDB7mjHJAlIaUUpRoFU1TAWgWR0CjKrrHuJDWdX2UKGgGaAloD0MIhnR4CGPrbUCUhpRSlGgVTSwBaBZHQKMrL08NhE11fZQoaAZoCWgPQwiEhChfULFuQJSGlFKUaBVNSQFoFkdAoyvoqZtvXXV9lChoBmgJaA9DCGrecYpOXHFAlIaUUpRoFU0uAWgWR0CjLFPs7dSEdX2UKGgGaAloD0MICd6QRgVAb0CUhpRSlGgVTTEBaBZHQKMsWHVwxWV1fZQoaAZoCWgPQwguVWmLqytxQJSGlFKUaBVNJgFoFkdAoyycAWBSUHV9lChoBmgJaA9DCIAMHTuo6m1AlIaUUpRoFU0zAWgWR0CjLLpMYdhidX2UKGgGaAloD0MIbJT1m4kZcUCUhpRSlGgVTUUBaBZHQKMtK4HX2/V1fZQoaAZoCWgPQwhE+BdBY7JrQJSGlFKUaBVNLwFoFkdAoy071TR6W3V9lChoBmgJaA9DCPw5BflZp3FAlIaUUpRoFU08AWgWR0CjLU6Gxlg/dWUu"
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 615,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
"gae_lambda": 0.95,
|
83 |
"ent_coef": 0.0,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
+
"n_epochs": 5,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
LunarLanderPPO/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:300df9d3ec60a1c775d099ea403e4501193dabfb4048368fbf2a83829d92e106
|
3 |
+
size 88057
|
LunarLanderPPO/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfe0242da9732b73b39ca3b6b7fec9044b0f2d79ac1047e875ff50b08b54779f
|
3 |
size 43393
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 265.68 +/- 13.76
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f381b3ab940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f381b3ab9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f381b3aba60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f381b3abaf0>", "_build": "<function ActorCriticPolicy._build at 0x7f381b3abb80>", "forward": "<function ActorCriticPolicy.forward at 0x7f381b3abc10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f381b3abca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f381b3abd30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f381b3abdc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f381b3abe50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f381b3abee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f381b3abf70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f381b3a5c60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677755068692305722, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoH2ryR3a8/NaA1vkX/l76+iwi86rMUvAAAAAAAAAAAAMAhurYxsj/8nxe9UUTcvlDQKDt94jg9AAAAAAAAAADg7DE+HA1svJ5xpbq3HGk5rF7TvdMHADoAAIA/AACAP+33Kz5IZIC8clB6uu2CRTkifAC+29jxOQAAgD8AAIA/DaoAPlxfFTs0soy+zJ8ZvjhL/bxi1S4/AACAPwAAAABNC5U+l1lkP5utcj6xUSi//LUnPx3NabsAAAAAAAAAABo7y72eCIk9xonyPcYEW74SfhG96hpuPAAAAAAAAAAAcwIBPmTNqz1wSZu+eUCovmTWlb0oTs68AAAAAAAAAACmgiW+Kk1dP9ukPL5bdyS/U1eAvjUHt70AAAAAAAAAAGbywTv5bSA/3pNXPBvqIL/f9b87VVg3vQAAAAAAAAAAs/USPmlGdbyCqA06feaGPL1F5L2OAVk9AACAPwAAgD/mSV+9w5Fhuna5J7PD4GuwZ2OSu2t6yTMAAIA/AACAP9qjJj625De89cQuO0X8Hbl5R5m9y/pZugAAgD8AAIA/JsKZvXKfvj/O4DW/YeppPq2onTyBcga+AAAAAAAAAACmz/c9AzIJvEezI73Dzt07bR0wPf0KGbwAAIA/AACAPyZs0z1c9ya6+m9etlUzrK/Rs9a7KnCGNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICft2EpHLb0CUhpRSlIwBbJRL0IwBdJRHQKFzKeIVM251fZQoaAZoCWgPQwjcnbXbLl1xQJSGlFKUaBVL5WgWR0Chc3MWGh24dX2UKGgGaAloD0MIqdvZV17RcECUhpRSlGgVTdMBaBZHQKFzk801qFh1fZQoaAZoCWgPQwgnT1lNlx1zQJSGlFKUaBVL/2gWR0Chc50/wAlwdX2UKGgGaAloD0MI2ZlC5zUdcECUhpRSlGgVS79oFkdAoXQFuLrHEXV9lChoBmgJaA9DCH0fDhKipmZAlIaUUpRoFU3oA2gWR0ChdM18Ti84dX2UKGgGaAloD0MIYMrAAS1DcECUhpRSlGgVS6FoFkdAoXTTpA2Q4nV9lChoBmgJaA9DCISDvYlhcXFAlIaUUpRoFUvJaBZHQKF0/d5Y5kt1fZQoaAZoCWgPQwhN9zqpb1dyQJSGlFKUaBVLymgWR0ChdR/SH/LldX2UKGgGaAloD0MIRiQKLauncUCUhpRSlGgVS6xoFkdAoXUft+kP+XV9lChoBmgJaA9DCMMOY9LfQHJAlIaUUpRoFUvlaBZHQKF1OcNpdrx1fZQoaAZoCWgPQwgotRfR9uJjQJSGlFKUaBVN6ANoFkdAoXVLgbZOBXV9lChoBmgJaA9DCN7n+Gix4nJAlIaUUpRoFUu4aBZHQKF16wKSgXd1fZQoaAZoCWgPQwiKkSVzLO9yQJSGlFKUaBVL7GgWR0ChdfAfuCwsdX2UKGgGaAloD0MILpJ2o4+6ckCUhpRSlGgVS9VoFkdAoXZiWX1J2HV9lChoBmgJaA9DCG+gwDs5E3BAlIaUUpRoFUuoaBZHQKF2eBXjlxR1fZQoaAZoCWgPQwh9WdqpOdFxQJSGlFKUaBVLuGgWR0ChdrQI+nqFdX2UKGgGaAloD0MICW8PQkChcECUhpRSlGgVS7ZoFkdAoXh7we/5+HV9lChoBmgJaA9DCKu0xTU+lG5AlIaUUpRoFUvAaBZHQKF4jcmBvrJ1fZQoaAZoCWgPQwjaG3xhslhyQJSGlFKUaBVLzWgWR0CheKVJ+UhWdX2UKGgGaAloD0MIuqC+Zc7ickCUhpRSlGgVS8toFkdAoXjyIDYAbXV9lChoBmgJaA9DCF+bjZXYCHFAlIaUUpRoFUvYaBZHQKF5Zc6/7BR1fZQoaAZoCWgPQwiLwcO0b7lxQJSGlFKUaBVL9WgWR0CheYbwSamXdX2UKGgGaAloD0MIQInPnSCPc0CUhpRSlGgVS+loFkdAoXnZMN+b3HV9lChoBmgJaA9DCKcDWU8tG3FAlIaUUpRoFUvCaBZHQKF52jFhodx1fZQoaAZoCWgPQwj0TZoGBclxQJSGlFKUaBVLnmgWR0Chegh+nZTRdX2UKGgGaAloD0MIpaKx9jdcckCUhpRSlGgVS7RoFkdAoXocYwZflnV9lChoBmgJaA9DCFNZFHbRNXFAlIaUUpRoFUvQaBZHQKF6JqL0jC51fZQoaAZoCWgPQwjvU1VoYCRyQJSGlFKUaBVLuWgWR0Chek4plSTAdX2UKGgGaAloD0MIiV3b2+1qcUCUhpRSlGgVS6JoFkdAoXvfJDE3sHV9lChoBmgJaA9DCDChgsPLoXBAlIaUUpRoFUupaBZHQKF8ESVW0Z51fZQoaAZoCWgPQwh4YWu2Mk9zQJSGlFKUaBVLu2gWR0ChfF71RLsbdX2UKGgGaAloD0MIisvxCkQNckCUhpRSlGgVS5hoFkdAoXxrM/yGz3V9lChoBmgJaA9DCO7qVWR0h29AlIaUUpRoFUuhaBZHQKF8dYI0IkZ1fZQoaAZoCWgPQwiQ2sTJfa1yQJSGlFKUaBVLwWgWR0ChfKKsEJSjdX2UKGgGaAloD0MIaAWGrO5lYUCUhpRSlGgVTegDaBZHQKF82BnSOR11fZQoaAZoCWgPQwgzF7g8FmZwQJSGlFKUaBVLqGgWR0ChfRktNBWxdX2UKGgGaAloD0MIwyy0c1pDckCUhpRSlGgVS7xoFkdAoX0ss+V1OnV9lChoBmgJaA9DCIYdxqT/c3JAlIaUUpRoFUvLaBZHQKF9PcafjCJ1fZQoaAZoCWgPQwjKbJBJhhtxQJSGlFKUaBVLxGgWR0ChfVPnjhkzdX2UKGgGaAloD0MIT3Yzo5/YcUCUhpRSlGgVTU8CaBZHQKF9ihufmLd1fZQoaAZoCWgPQwgEcR5OoEdyQJSGlFKUaBVL2WgWR0ChfY7p/wy7dX2UKGgGaAloD0MIuYswRfmlckCUhpRSlGgVS+doFkdAoX2QE0SAY3V9lChoBmgJaA9DCMf2WtB7yG9AlIaUUpRoFUukaBZHQKF+VbSJCSl1fZQoaAZoCWgPQwh1j2yuWjxwQJSGlFKUaBVLxWgWR0Chfnj+irT6dX2UKGgGaAloD0MIuTZUjDOPcECUhpRSlGgVS+toFkdAoX7T1PFefXV9lChoBmgJaA9DCN2XM9sVAnNAlIaUUpRoFUvJaBZHQKF+2Wa+evp1fZQoaAZoCWgPQwi2n4zxYbNxQJSGlFKUaBVLyGgWR0Chft/grH2idX2UKGgGaAloD0MITU7tDFMgbkCUhpRSlGgVS75oFkdAoX7rNbC79XV9lChoBmgJaA9DCLbykv9JM3JAlIaUUpRoFUuwaBZHQKF+8h37k4p1fZQoaAZoCWgPQwiDonkAC4JyQJSGlFKUaBVLwGgWR0Chf3DNQj2SdX2UKGgGaAloD0MIMLyS5PmscECUhpRSlGgVS7RoFkdAoX91Gus90XV9lChoBmgJaA9DCPj578Fro3FAlIaUUpRoFUvTaBZHQKF/lgjQiRp1fZQoaAZoCWgPQwg5twn3Sj9yQJSGlFKUaBVLsWgWR0Chf6EY4yXVdX2UKGgGaAloD0MIUyCzs+gRc0CUhpRSlGgVS7doFkdAoX+2cJ+lTHV9lChoBmgJaA9DCKRUwhM6SHJAlIaUUpRoFUvXaBZHQKF/xJCjUNN1fZQoaAZoCWgPQwg10lJ5+5dyQJSGlFKUaBVLxmgWR0Chf+F/QSi/dX2UKGgGaAloD0MINZawNkZWc0CUhpRSlGgVS8BoFkdAoYC/pY9xInV9lChoBmgJaA9DCPsCeuHOVnJAlIaUUpRoFUunaBZHQKGAywt8NQV1fZQoaAZoCWgPQwjK+s3EtMNwQJSGlFKUaBVL1WgWR0ChgW6Pjn3ddX2UKGgGaAloD0MIaM76lCMpcUCUhpRSlGgVS6ZoFkdAoYGEcbR4QnV9lChoBmgJaA9DCBjuXBhpn3FAlIaUUpRoFUvcaBZHQKGBm9Gqgh91fZQoaAZoCWgPQwhuaqD53OpyQJSGlFKUaBVL7GgWR0ChgeA0CRwIdX2UKGgGaAloD0MIAyZw6+7UcECUhpRSlGgVS8loFkdAoYH8uctoSXV9lChoBmgJaA9DCCk8aHadCHJAlIaUUpRoFUulaBZHQKGCCHjZL7J1fZQoaAZoCWgPQwjnjCjtTXVyQJSGlFKUaBVNAgFoFkdAoYIV7ngYQHV9lChoBmgJaA9DCOY9zjThV3NAlIaUUpRoFUvLaBZHQKGCaQkHD791fZQoaAZoCWgPQwj/snvysOxwQJSGlFKUaBVL12gWR0ChgmmgSOBEdX2UKGgGaAloD0MIY7Mj1TcXcUCUhpRSlGgVS+doFkdAoYKTKDCgsnV9lChoBmgJaA9DCA9/TdYoEWVAlIaUUpRoFU3oA2gWR0ChguyRSxZ/dX2UKGgGaAloD0MIOugSDn3dckCUhpRSlGgVS8hoFkdAoYN5giNbT3V9lChoBmgJaA9DCNeGinF+N2FAlIaUUpRoFU3oA2gWR0Chg4JZW7vodX2UKGgGaAloD0MImPc40wTJcUCUhpRSlGgVS9FoFkdAoYOjDMvAXXV9lChoBmgJaA9DCA/SU+SQT29AlIaUUpRoFUu6aBZHQKGEFZ/0/W11fZQoaAZoCWgPQwixNsZO+HZuQJSGlFKUaBVLn2gWR0ChhBWQGOdYdX2UKGgGaAloD0MIIlM+BFUVcECUhpRSlGgVS7loFkdAoYR1QGfPHHV9lChoBmgJaA9DCH8UdeYefHJAlIaUUpRoFUvmaBZHQKGEe/xDst11fZQoaAZoCWgPQwi77UJznTRvQJSGlFKUaBVLzGgWR0ChhIwTmGM5dX2UKGgGaAloD0MIDmWoium6ckCUhpRSlGgVS+1oFkdAoYSjtkWhy3V9lChoBmgJaA9DCAjNrnsrVXBAlIaUUpRoFUu5aBZHQKGEx9If8uV1fZQoaAZoCWgPQwhv10tTROFxQJSGlFKUaBVLt2gWR0ChhOUutfXxdX2UKGgGaAloD0MIPUfku1TtckCUhpRSlGgVTQIBaBZHQKGFrntfG+91fZQoaAZoCWgPQwiEgHwJFXBxQJSGlFKUaBVL5WgWR0Chhcm+9Jz1dX2UKGgGaAloD0MId/S/XAt9ckCUhpRSlGgVS8poFkdAoYX55NXYDnV9lChoBmgJaA9DCKCkwAKYm3JAlIaUUpRoFUvWaBZHQKGGKGA08/51fZQoaAZoCWgPQwiWPnRBPbBxQJSGlFKUaBVLrWgWR0Chhj8XvYvndX2UKGgGaAloD0MIbsST3UzkcUCUhpRSlGgVS9doFkdAoYZOjZcs2HV9lChoBmgJaA9DCHO9babCw3BAlIaUUpRoFUu4aBZHQKGGYesgdOt1fZQoaAZoCWgPQwiyZI7lnVxwQJSGlFKUaBVLtWgWR0Chhr4sNDtxdX2UKGgGaAloD0MIjpWYZ6Ubb0CUhpRSlGgVS8NoFkdAoYbmlwcYInV9lChoBmgJaA9DCG2P3nAfInFAlIaUUpRoFUu6aBZHQKGG+pFTeft1fZQoaAZoCWgPQwgn3Cvz1uluQJSGlFKUaBVLsGgWR0ChhwKKYRdydX2UKGgGaAloD0MI2hznNqEWcUCUhpRSlGgVS8ZoFkdAoYdkSmIj4nV9lChoBmgJaA9DCF8Lem/M9nBAlIaUUpRoFUvmaBZHQKGHavQnhKl1fZQoaAZoCWgPQwj2s1iKJDlyQJSGlFKUaBVL3GgWR0ChiILi2lVMdX2UKGgGaAloD0MICi/BqY9MckCUhpRSlGgVS61oFkdAoYiIL/jsEHV9lChoBmgJaA9DCGajc36Kx3JAlIaUUpRoFUvXaBZHQKGIjwLmZE51fZQoaAZoCWgPQwglCFdA4fNwQJSGlFKUaBVL12gWR0ChiRA3DNyHdX2UKGgGaAloD0MIZePBFjvkcECUhpRSlGgVS/BoFkdAoYkgdOqNqHV9lChoBmgJaA9DCKzlzkxwI3JAlIaUUpRoFUvZaBZHQKGJPktEofF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 460, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2f1d343940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2f1d3439d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2f1d343a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2f1d343af0>", "_build": "<function ActorCriticPolicy._build at 0x7f2f1d343b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f2f1d343c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2f1d343ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2f1d343d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2f1d343dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2f1d343e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2f1d343ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2f1d343f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2f1d3406c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677768313569170092, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALP8ab0P0ZY/VgAiO78bqb5YIkG9flU+PQAAAAAAAAAAjQyTPuJWej9yQ94+qsmfvrJXgD4Zmas8AAAAAAAAAAAA8py9XHsVun7nlroh5SC2Ef2COqGCsDkAAAAAAAAAAACNvj7PUiE/T1YwvTT5hL6m3vc9ppmOvQAAAAAAAAAAcw0NPuxU3bsF9Ou6Z6JlOXp7Kb0KsVc6AAAAAAAAgD9zsfI9+FqdPNVfX74kGj++/EqavChWyDwAAAAAAAAAAM08TTusHM0+wFDhOxrwbr6APHA8Y0gdvAAAAAAAAAAAZiCWvSxfjj/Ta188/02cvkgML736ggA9AAAAAAAAAAANVYw98aewP+pDBz+CR4W+vCs2PXIvaz4AAAAAAAAAADM50r2Wcr0/jeoOvwgUA70drPq9AnqXvgAAAAAAAAAAZsBlPRkpfj+id9Y8j7aUvjeioTx/j608AAAAAAAAAADzp4E9MbJsPtI4dr2rF0O+Js4BPd2SNr0AAAAAAAAAAM3YqTt5Ob0/cKFIPMuk/b3/6um8+wzpPAAAAAAAAAAAwIufvd05Ij4egM09FIsuvtIVLzxZfpe8AAAAAAAAAAB97qc+6uUDPxh4mr7RLz++XEz1PIi/YL0AAAAAAAAAAM2eOD0tpgY/M3LCvAwsh75k6Xk8dklBvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIEHxY0zsb0CUhpRSlIwBbJRNTAGMAXSUR0Ci6mwxvegtdX2UKGgGaAloD0MIg04IHXSYbUCUhpRSlGgVTUIBaBZHQKLrt3ztkWh1fZQoaAZoCWgPQwjX2vtUVSZyQJSGlFKUaBVNXAFoFkdAouvp3xFy73V9lChoBmgJaA9DCMPX17rUQHBAlIaUUpRoFU1ZAWgWR0Ci+kHBciW3dX2UKGgGaAloD0MIN/qYDwjtbUCUhpRSlGgVTSYBaBZHQKL6lcYZVGV1fZQoaAZoCWgPQwj1L0llioFxQJSGlFKUaBVNWwFoFkdAovrePo3aSXV9lChoBmgJaA9DCDRkPErlU3FAlIaUUpRoFU1TAWgWR0Ci+wdkrf+CdX2UKGgGaAloD0MIv0nToCjXckCUhpRSlGgVTVUBaBZHQKL7dDfFaSt1fZQoaAZoCWgPQwiiJCTSNihwQJSGlFKUaBVNRwFoFkdAovvEc0cfeXV9lChoBmgJaA9DCN7GZkdq6nBAlIaUUpRoFU0qAWgWR0Ci+9sZYPoWdX2UKGgGaAloD0MIcRsN4K0fcUCUhpRSlGgVTSMBaBZHQKL8OpEx7At1fZQoaAZoCWgPQwhkP4ulyGhjQJSGlFKUaBVN6ANoFkdAovw63uuzQnV9lChoBmgJaA9DCM9pFmi3QHFAlIaUUpRoFU1HAWgWR0Ci/Gj5CWu6dX2UKGgGaAloD0MIGsHG9W9fcECUhpRSlGgVTVEBaBZHQKL9V0HQhOh1fZQoaAZoCWgPQwj1K50PTxJwQJSGlFKUaBVNLwFoFkdAov2UYbbUPXV9lChoBmgJaA9DCJXyWgndv3BAlIaUUpRoFU0zAWgWR0Ci/br8aXKKdX2UKGgGaAloD0MIISI17WKVbkCUhpRSlGgVTTUBaBZHQKL+f/QSi/R1fZQoaAZoCWgPQwhY5q26jgBuQJSGlFKUaBVNMQFoFkdAov6LpX6qKnV9lChoBmgJaA9DCLjJqDKMpW9AlIaUUpRoFU1FAWgWR0Ci/73PAwfydX2UKGgGaAloD0MID7qEQ2/ocECUhpRSlGgVTV8BaBZHQKL/39GZuyh1fZQoaAZoCWgPQwg+6q9X2MlxQJSGlFKUaBVNRAFoFkdAowAErd30PHV9lChoBmgJaA9DCN9PjZduTW5AlIaUUpRoFU1NAWgWR0CjAFfsu3+ddX2UKGgGaAloD0MIqDXNO462cECUhpRSlGgVTSQBaBZHQKMAY66reZZ1fZQoaAZoCWgPQwh8tg4OdtJxQJSGlFKUaBVNPAFoFkdAowB7RBu4w3V9lChoBmgJaA9DCI6yfjMx8HFAlIaUUpRoFU1IAWgWR0CjAQaDf3vhdX2UKGgGaAloD0MIBOj3/RvxcUCUhpRSlGgVTTkBaBZHQKMBKxL0z0p1fZQoaAZoCWgPQwiz7Elgc2tvQJSGlFKUaBVNNgFoFkdAowFaSFGoaXV9lChoBmgJaA9DCL9jeOyn6XBAlIaUUpRoFU1oAWgWR0CjAdhCUorndX2UKGgGaAloD0MI+tAF9W27cECUhpRSlGgVTSwBaBZHQKMCIr/bTMJ1fZQoaAZoCWgPQwgaGk8EMbJyQJSGlFKUaBVNMAFoFkdAowJtCqp97XV9lChoBmgJaA9DCHeC/dc5A2tAlIaUUpRoFU1CAWgWR0CjAuFCCz1LdX2UKGgGaAloD0MIbatZZzy4cECUhpRSlGgVTS8BaBZHQKMDYnF5v991fZQoaAZoCWgPQwiHFtnOt/BwQJSGlFKUaBVNNgFoFkdAowOKrtE5Q3V9lChoBmgJaA9DCBqLprMTNm5AlIaUUpRoFU0oAWgWR0CjBLhvze41dX2UKGgGaAloD0MIsJC5MqgOcECUhpRSlGgVTScBaBZHQKME38AJb+t1fZQoaAZoCWgPQwhxOzQsRjpxQJSGlFKUaBVNTwFoFkdAowYl1MdtEXV9lChoBmgJaA9DCOza3m5JAm9AlIaUUpRoFU00AWgWR0CjBi7y6MBIdX2UKGgGaAloD0MIwCSVKeY/cECUhpRSlGgVTUkBaBZHQKMGj43WFvh1fZQoaAZoCWgPQwhUGcbdIN5vQJSGlFKUaBVNVgFoFkdAowbO+wkgOnV9lChoBmgJaA9DCMfXnlmSSHFAlIaUUpRoFU0kAWgWR0CjBuFuFYdRdX2UKGgGaAloD0MIs+xJYHOUbUCUhpRSlGgVTTsBaBZHQKMHMWi1y/91fZQoaAZoCWgPQwggQfFjDDNxQJSGlFKUaBVNNAFoFkdAowd7FOwgT3V9lChoBmgJaA9DCP8G7dVHU3FAlIaUUpRoFU04AWgWR0CjCFK6e5FxdX2UKGgGaAloD0MItHdGWxVGb0CUhpRSlGgVTTUBaBZHQKMIt5C4SYh1fZQoaAZoCWgPQwgZHvtZbKhwQJSGlFKUaBVNMwFoFkdAowkc0zj3mHV9lChoBmgJaA9DCBAEyNDxRnBAlIaUUpRoFU0tAWgWR0CjCpdPk7wKdX2UKGgGaAloD0MIE5z6QHJbb0CUhpRSlGgVTVkBaBZHQKMKqpKjBVN1fZQoaAZoCWgPQwjAzHfwE91hQJSGlFKUaBVN6ANoFkdAowrYqPOpsHV9lChoBmgJaA9DCFrXaDlQi3BAlIaUUpRoFU01AWgWR0CjDA6Xa8HwdX2UKGgGaAloD0MI38FPHMD5bECUhpRSlGgVTY0BaBZHQKMMs9HMEA51fZQoaAZoCWgPQwjZeoZwDB5wQJSGlFKUaBVNKwFoFkdAow0zhWHUMHV9lChoBmgJaA9DCD1FDhE3bG9AlIaUUpRoFU05AWgWR0CjGmmCI1tPdX2UKGgGaAloD0MIR1Sobi5ub0CUhpRSlGgVTUcBaBZHQKMafRP420l1fZQoaAZoCWgPQwii8Nk6+J5wQJSGlFKUaBVNWQFoFkdAoxqKOWBz3nV9lChoBmgJaA9DCNTRcTVydnFAlIaUUpRoFU1BAWgWR0CjGppfQa73dX2UKGgGaAloD0MIFMstrQaLbUCUhpRSlGgVTT0BaBZHQKMawCZnctZ1fZQoaAZoCWgPQwjDSC9q9zNvQJSGlFKUaBVNOQFoFkdAoxrgqEvkBHV9lChoBmgJaA9DCISfOID+GW9AlIaUUpRoFU00AWgWR0CjG11+I/JOdX2UKGgGaAloD0MIk6zD0VUlcUCUhpRSlGgVTVUBaBZHQKMcKrZrYXh1fZQoaAZoCWgPQwjp0VRP5g1wQJSGlFKUaBVNVQFoFkdAoxx21MM7VHV9lChoBmgJaA9DCBMoYhHDlG5AlIaUUpRoFU0rAWgWR0CjHOC79Q40dX2UKGgGaAloD0MIfQiqRi+ra0CUhpRSlGgVTT8BaBZHQKMdWAFPi1l1fZQoaAZoCWgPQwhmg0wyckNwQJSGlFKUaBVNTAFoFkdAox1ga72+PHV9lChoBmgJaA9DCFzlCYQdEXFAlIaUUpRoFU0zAWgWR0CjHfo5YHPedX2UKGgGaAloD0MITiZuFYRrcECUhpRSlGgVTT8BaBZHQKMenonrpq11fZQoaAZoCWgPQwj2tpkKsb1xQJSGlFKUaBVNTQFoFkdAox8/TCtRvXV9lChoBmgJaA9DCMy3Pqw3UG1AlIaUUpRoFU0uAWgWR0CjH2iVKPGRdX2UKGgGaAloD0MIIZIhx1a4bECUhpRSlGgVTS8BaBZHQKMfjcLSeAd1fZQoaAZoCWgPQwiBzTl45tVwQJSGlFKUaBVNOAFoFkdAox+l5prULHV9lChoBmgJaA9DCPTfg9cutW1AlIaUUpRoFU0+AWgWR0CjH9Mb3oLYdX2UKGgGaAloD0MIh2wgXWwRbkCUhpRSlGgVTS4BaBZHQKMf3jUd7v51fZQoaAZoCWgPQwizXDY6JyxyQJSGlFKUaBVNTAFoFkdAoyAeX3QD3nV9lChoBmgJaA9DCKPJxRiYf3JAlIaUUpRoFU06AWgWR0CjIT8pTdcjdX2UKGgGaAloD0MITwRxHs5ta0CUhpRSlGgVTToBaBZHQKMhqMrmQsB1fZQoaAZoCWgPQwgLe9rhLyJtQJSGlFKUaBVNPQFoFkdAoyJLPjXFtXV9lChoBmgJaA9DCNPAj2rY5nBAlIaUUpRoFU0qAWgWR0CjIn/hVENOdX2UKGgGaAloD0MIxoZu9gdabUCUhpRSlGgVTS0BaBZHQKMimj9n9Nx1fZQoaAZoCWgPQwhUVz7L83NuQJSGlFKUaBVNSwFoFkdAoyQPtD2JznV9lChoBmgJaA9DCCPajqk7Bm5AlIaUUpRoFU0vAWgWR0CjJETvAoG6dX2UKGgGaAloD0MIxcn9DkXxYUCUhpRSlGgVTegDaBZHQKMle2R7qpt1fZQoaAZoCWgPQwgVHF4QEY5tQJSGlFKUaBVNKwFoFkdAoyWK1JDmbXV9lChoBmgJaA9DCMSWHk31yG5AlIaUUpRoFU0wAWgWR0CjJhPVVghKdX2UKGgGaAloD0MIveR/8rdTcUCUhpRSlGgVTVMBaBZHQKMmNGaQV9F1fZQoaAZoCWgPQwih20sao4ZwQJSGlFKUaBVNUgFoFkdAoyZfhS9/SnV9lChoBmgJaA9DCCpWDcJczmtAlIaUUpRoFU05AWgWR0CjJsw8fV7QdX2UKGgGaAloD0MI5Pih0gi2cUCUhpRSlGgVTVkBaBZHQKMm+9Iwudx1fZQoaAZoCWgPQwgziA/s+B9yQJSGlFKUaBVNOAFoFkdAoyiM4gieNHV9lChoBmgJaA9DCNR9AFKbeXBAlIaUUpRoFU0nAWgWR0CjKUFeOXE7dX2UKGgGaAloD0MIp11MM12IckCUhpRSlGgVTVkBaBZHQKMp0wJw84h1fZQoaAZoCWgPQwg3NdB8DgdwQJSGlFKUaBVNPQFoFkdAoyoLOoo/inV9lChoBmgJaA9DCIFaDB7mjHJAlIaUUpRoFU1TAWgWR0CjKrrHuJDWdX2UKGgGaAloD0MIhnR4CGPrbUCUhpRSlGgVTSwBaBZHQKMrL08NhE11fZQoaAZoCWgPQwiEhChfULFuQJSGlFKUaBVNSQFoFkdAoyvoqZtvXXV9lChoBmgJaA9DCGrecYpOXHFAlIaUUpRoFU0uAWgWR0CjLFPs7dSEdX2UKGgGaAloD0MICd6QRgVAb0CUhpRSlGgVTTEBaBZHQKMsWHVwxWV1fZQoaAZoCWgPQwguVWmLqytxQJSGlFKUaBVNJgFoFkdAoyycAWBSUHV9lChoBmgJaA9DCIAMHTuo6m1AlIaUUpRoFU0zAWgWR0CjLLpMYdhidX2UKGgGaAloD0MIbJT1m4kZcUCUhpRSlGgVTUUBaBZHQKMtK4HX2/V1fZQoaAZoCWgPQwhE+BdBY7JrQJSGlFKUaBVNLwFoFkdAoy071TR6W3V9lChoBmgJaA9DCPw5BflZp3FAlIaUUpRoFU08AWgWR0CjLU6Gxlg/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 615, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 265.6846327972063, "std_reward": 13.760086940616036, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T15:41:05.439115"}
|