File size: 14,436 Bytes
45b4aa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import torch
import torch.nn as nn
from annotator.uniformer.mmcv.cnn import (ConvModule, DepthwiseSeparableConvModule, constant_init,
kaiming_init)
from torch.nn.modules.batchnorm import _BatchNorm
from annotator.uniformer.mmseg.models.decode_heads.psp_head import PPM
from annotator.uniformer.mmseg.ops import resize
from ..builder import BACKBONES
from ..utils.inverted_residual import InvertedResidual
class LearningToDownsample(nn.Module):
"""Learning to downsample module.
Args:
in_channels (int): Number of input channels.
dw_channels (tuple[int]): Number of output channels of the first and
the second depthwise conv (dwconv) layers.
out_channels (int): Number of output channels of the whole
'learning to downsample' module.
conv_cfg (dict | None): Config of conv layers. Default: None
norm_cfg (dict | None): Config of norm layers. Default:
dict(type='BN')
act_cfg (dict): Config of activation layers. Default:
dict(type='ReLU')
"""
def __init__(self,
in_channels,
dw_channels,
out_channels,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU')):
super(LearningToDownsample, self).__init__()
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
dw_channels1 = dw_channels[0]
dw_channels2 = dw_channels[1]
self.conv = ConvModule(
in_channels,
dw_channels1,
3,
stride=2,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.dsconv1 = DepthwiseSeparableConvModule(
dw_channels1,
dw_channels2,
kernel_size=3,
stride=2,
padding=1,
norm_cfg=self.norm_cfg)
self.dsconv2 = DepthwiseSeparableConvModule(
dw_channels2,
out_channels,
kernel_size=3,
stride=2,
padding=1,
norm_cfg=self.norm_cfg)
def forward(self, x):
x = self.conv(x)
x = self.dsconv1(x)
x = self.dsconv2(x)
return x
class GlobalFeatureExtractor(nn.Module):
"""Global feature extractor module.
Args:
in_channels (int): Number of input channels of the GFE module.
Default: 64
block_channels (tuple[int]): Tuple of ints. Each int specifies the
number of output channels of each Inverted Residual module.
Default: (64, 96, 128)
out_channels(int): Number of output channels of the GFE module.
Default: 128
expand_ratio (int): Adjusts number of channels of the hidden layer
in InvertedResidual by this amount.
Default: 6
num_blocks (tuple[int]): Tuple of ints. Each int specifies the
number of times each Inverted Residual module is repeated.
The repeated Inverted Residual modules are called a 'group'.
Default: (3, 3, 3)
strides (tuple[int]): Tuple of ints. Each int specifies
the downsampling factor of each 'group'.
Default: (2, 2, 1)
pool_scales (tuple[int]): Tuple of ints. Each int specifies
the parameter required in 'global average pooling' within PPM.
Default: (1, 2, 3, 6)
conv_cfg (dict | None): Config of conv layers. Default: None
norm_cfg (dict | None): Config of norm layers. Default:
dict(type='BN')
act_cfg (dict): Config of activation layers. Default:
dict(type='ReLU')
align_corners (bool): align_corners argument of F.interpolate.
Default: False
"""
def __init__(self,
in_channels=64,
block_channels=(64, 96, 128),
out_channels=128,
expand_ratio=6,
num_blocks=(3, 3, 3),
strides=(2, 2, 1),
pool_scales=(1, 2, 3, 6),
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
align_corners=False):
super(GlobalFeatureExtractor, self).__init__()
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
assert len(block_channels) == len(num_blocks) == 3
self.bottleneck1 = self._make_layer(in_channels, block_channels[0],
num_blocks[0], strides[0],
expand_ratio)
self.bottleneck2 = self._make_layer(block_channels[0],
block_channels[1], num_blocks[1],
strides[1], expand_ratio)
self.bottleneck3 = self._make_layer(block_channels[1],
block_channels[2], num_blocks[2],
strides[2], expand_ratio)
self.ppm = PPM(
pool_scales,
block_channels[2],
block_channels[2] // 4,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
align_corners=align_corners)
self.out = ConvModule(
block_channels[2] * 2,
out_channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def _make_layer(self,
in_channels,
out_channels,
blocks,
stride=1,
expand_ratio=6):
layers = [
InvertedResidual(
in_channels,
out_channels,
stride,
expand_ratio,
norm_cfg=self.norm_cfg)
]
for i in range(1, blocks):
layers.append(
InvertedResidual(
out_channels,
out_channels,
1,
expand_ratio,
norm_cfg=self.norm_cfg))
return nn.Sequential(*layers)
def forward(self, x):
x = self.bottleneck1(x)
x = self.bottleneck2(x)
x = self.bottleneck3(x)
x = torch.cat([x, *self.ppm(x)], dim=1)
x = self.out(x)
return x
class FeatureFusionModule(nn.Module):
"""Feature fusion module.
Args:
higher_in_channels (int): Number of input channels of the
higher-resolution branch.
lower_in_channels (int): Number of input channels of the
lower-resolution branch.
out_channels (int): Number of output channels.
conv_cfg (dict | None): Config of conv layers. Default: None
norm_cfg (dict | None): Config of norm layers. Default:
dict(type='BN')
act_cfg (dict): Config of activation layers. Default:
dict(type='ReLU')
align_corners (bool): align_corners argument of F.interpolate.
Default: False
"""
def __init__(self,
higher_in_channels,
lower_in_channels,
out_channels,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
align_corners=False):
super(FeatureFusionModule, self).__init__()
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.align_corners = align_corners
self.dwconv = ConvModule(
lower_in_channels,
out_channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.conv_lower_res = ConvModule(
out_channels,
out_channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=None)
self.conv_higher_res = ConvModule(
higher_in_channels,
out_channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=None)
self.relu = nn.ReLU(True)
def forward(self, higher_res_feature, lower_res_feature):
lower_res_feature = resize(
lower_res_feature,
size=higher_res_feature.size()[2:],
mode='bilinear',
align_corners=self.align_corners)
lower_res_feature = self.dwconv(lower_res_feature)
lower_res_feature = self.conv_lower_res(lower_res_feature)
higher_res_feature = self.conv_higher_res(higher_res_feature)
out = higher_res_feature + lower_res_feature
return self.relu(out)
@BACKBONES.register_module()
class FastSCNN(nn.Module):
"""Fast-SCNN Backbone.
Args:
in_channels (int): Number of input image channels. Default: 3.
downsample_dw_channels (tuple[int]): Number of output channels after
the first conv layer & the second conv layer in
Learning-To-Downsample (LTD) module.
Default: (32, 48).
global_in_channels (int): Number of input channels of
Global Feature Extractor(GFE).
Equal to number of output channels of LTD.
Default: 64.
global_block_channels (tuple[int]): Tuple of integers that describe
the output channels for each of the MobileNet-v2 bottleneck
residual blocks in GFE.
Default: (64, 96, 128).
global_block_strides (tuple[int]): Tuple of integers
that describe the strides (downsampling factors) for each of the
MobileNet-v2 bottleneck residual blocks in GFE.
Default: (2, 2, 1).
global_out_channels (int): Number of output channels of GFE.
Default: 128.
higher_in_channels (int): Number of input channels of the higher
resolution branch in FFM.
Equal to global_in_channels.
Default: 64.
lower_in_channels (int): Number of input channels of the lower
resolution branch in FFM.
Equal to global_out_channels.
Default: 128.
fusion_out_channels (int): Number of output channels of FFM.
Default: 128.
out_indices (tuple): Tuple of indices of list
[higher_res_features, lower_res_features, fusion_output].
Often set to (0,1,2) to enable aux. heads.
Default: (0, 1, 2).
conv_cfg (dict | None): Config of conv layers. Default: None
norm_cfg (dict | None): Config of norm layers. Default:
dict(type='BN')
act_cfg (dict): Config of activation layers. Default:
dict(type='ReLU')
align_corners (bool): align_corners argument of F.interpolate.
Default: False
"""
def __init__(self,
in_channels=3,
downsample_dw_channels=(32, 48),
global_in_channels=64,
global_block_channels=(64, 96, 128),
global_block_strides=(2, 2, 1),
global_out_channels=128,
higher_in_channels=64,
lower_in_channels=128,
fusion_out_channels=128,
out_indices=(0, 1, 2),
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
align_corners=False):
super(FastSCNN, self).__init__()
if global_in_channels != higher_in_channels:
raise AssertionError('Global Input Channels must be the same \
with Higher Input Channels!')
elif global_out_channels != lower_in_channels:
raise AssertionError('Global Output Channels must be the same \
with Lower Input Channels!')
self.in_channels = in_channels
self.downsample_dw_channels1 = downsample_dw_channels[0]
self.downsample_dw_channels2 = downsample_dw_channels[1]
self.global_in_channels = global_in_channels
self.global_block_channels = global_block_channels
self.global_block_strides = global_block_strides
self.global_out_channels = global_out_channels
self.higher_in_channels = higher_in_channels
self.lower_in_channels = lower_in_channels
self.fusion_out_channels = fusion_out_channels
self.out_indices = out_indices
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.align_corners = align_corners
self.learning_to_downsample = LearningToDownsample(
in_channels,
downsample_dw_channels,
global_in_channels,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.global_feature_extractor = GlobalFeatureExtractor(
global_in_channels,
global_block_channels,
global_out_channels,
strides=self.global_block_strides,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
align_corners=self.align_corners)
self.feature_fusion = FeatureFusionModule(
higher_in_channels,
lower_in_channels,
fusion_out_channels,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
align_corners=self.align_corners)
def init_weights(self, pretrained=None):
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
constant_init(m, 1)
def forward(self, x):
higher_res_features = self.learning_to_downsample(x)
lower_res_features = self.global_feature_extractor(higher_res_features)
fusion_output = self.feature_fusion(higher_res_features,
lower_res_features)
outs = [higher_res_features, lower_res_features, fusion_output]
outs = [outs[i] for i in self.out_indices]
return tuple(outs)
|