|
import math |
|
|
|
from annotator.uniformer.mmcv.cnn import build_conv_layer, build_norm_layer |
|
|
|
from ..builder import BACKBONES |
|
from ..utils import ResLayer |
|
from .resnet import Bottleneck as _Bottleneck |
|
from .resnet import ResNet |
|
|
|
|
|
class Bottleneck(_Bottleneck): |
|
"""Bottleneck block for ResNeXt. |
|
|
|
If style is "pytorch", the stride-two layer is the 3x3 conv layer, if it is |
|
"caffe", the stride-two layer is the first 1x1 conv layer. |
|
""" |
|
|
|
def __init__(self, |
|
inplanes, |
|
planes, |
|
groups=1, |
|
base_width=4, |
|
base_channels=64, |
|
**kwargs): |
|
super(Bottleneck, self).__init__(inplanes, planes, **kwargs) |
|
|
|
if groups == 1: |
|
width = self.planes |
|
else: |
|
width = math.floor(self.planes * |
|
(base_width / base_channels)) * groups |
|
|
|
self.norm1_name, norm1 = build_norm_layer( |
|
self.norm_cfg, width, postfix=1) |
|
self.norm2_name, norm2 = build_norm_layer( |
|
self.norm_cfg, width, postfix=2) |
|
self.norm3_name, norm3 = build_norm_layer( |
|
self.norm_cfg, self.planes * self.expansion, postfix=3) |
|
|
|
self.conv1 = build_conv_layer( |
|
self.conv_cfg, |
|
self.inplanes, |
|
width, |
|
kernel_size=1, |
|
stride=self.conv1_stride, |
|
bias=False) |
|
self.add_module(self.norm1_name, norm1) |
|
fallback_on_stride = False |
|
self.with_modulated_dcn = False |
|
if self.with_dcn: |
|
fallback_on_stride = self.dcn.pop('fallback_on_stride', False) |
|
if not self.with_dcn or fallback_on_stride: |
|
self.conv2 = build_conv_layer( |
|
self.conv_cfg, |
|
width, |
|
width, |
|
kernel_size=3, |
|
stride=self.conv2_stride, |
|
padding=self.dilation, |
|
dilation=self.dilation, |
|
groups=groups, |
|
bias=False) |
|
else: |
|
assert self.conv_cfg is None, 'conv_cfg must be None for DCN' |
|
self.conv2 = build_conv_layer( |
|
self.dcn, |
|
width, |
|
width, |
|
kernel_size=3, |
|
stride=self.conv2_stride, |
|
padding=self.dilation, |
|
dilation=self.dilation, |
|
groups=groups, |
|
bias=False) |
|
|
|
self.add_module(self.norm2_name, norm2) |
|
self.conv3 = build_conv_layer( |
|
self.conv_cfg, |
|
width, |
|
self.planes * self.expansion, |
|
kernel_size=1, |
|
bias=False) |
|
self.add_module(self.norm3_name, norm3) |
|
|
|
|
|
@BACKBONES.register_module() |
|
class ResNeXt(ResNet): |
|
"""ResNeXt backbone. |
|
|
|
Args: |
|
depth (int): Depth of resnet, from {18, 34, 50, 101, 152}. |
|
in_channels (int): Number of input image channels. Normally 3. |
|
num_stages (int): Resnet stages, normally 4. |
|
groups (int): Group of resnext. |
|
base_width (int): Base width of resnext. |
|
strides (Sequence[int]): Strides of the first block of each stage. |
|
dilations (Sequence[int]): Dilation of each stage. |
|
out_indices (Sequence[int]): Output from which stages. |
|
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two |
|
layer is the 3x3 conv layer, otherwise the stride-two layer is |
|
the first 1x1 conv layer. |
|
frozen_stages (int): Stages to be frozen (all param fixed). -1 means |
|
not freezing any parameters. |
|
norm_cfg (dict): dictionary to construct and config norm layer. |
|
norm_eval (bool): Whether to set norm layers to eval mode, namely, |
|
freeze running stats (mean and var). Note: Effect on Batch Norm |
|
and its variants only. |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. |
|
zero_init_residual (bool): whether to use zero init for last norm layer |
|
in resblocks to let them behave as identity. |
|
|
|
Example: |
|
>>> from annotator.uniformer.mmseg.models import ResNeXt |
|
>>> import torch |
|
>>> self = ResNeXt(depth=50) |
|
>>> self.eval() |
|
>>> inputs = torch.rand(1, 3, 32, 32) |
|
>>> level_outputs = self.forward(inputs) |
|
>>> for level_out in level_outputs: |
|
... print(tuple(level_out.shape)) |
|
(1, 256, 8, 8) |
|
(1, 512, 4, 4) |
|
(1, 1024, 2, 2) |
|
(1, 2048, 1, 1) |
|
""" |
|
|
|
arch_settings = { |
|
50: (Bottleneck, (3, 4, 6, 3)), |
|
101: (Bottleneck, (3, 4, 23, 3)), |
|
152: (Bottleneck, (3, 8, 36, 3)) |
|
} |
|
|
|
def __init__(self, groups=1, base_width=4, **kwargs): |
|
self.groups = groups |
|
self.base_width = base_width |
|
super(ResNeXt, self).__init__(**kwargs) |
|
|
|
def make_res_layer(self, **kwargs): |
|
"""Pack all blocks in a stage into a ``ResLayer``""" |
|
return ResLayer( |
|
groups=self.groups, |
|
base_width=self.base_width, |
|
base_channels=self.base_channels, |
|
**kwargs) |
|
|