File size: 3,152 Bytes
d510589 6ddf34d dfe2a87 0552091 6ddf34d d510589 6818297 95efdc1 55aa619 d510589 ae0fc7b 55aa619 d510589 ae0fc7b 6ddf34d cae61c0 d510589 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
---
tags:
- Causal Language modeling
- text-generation
- CLM
model_index:
- name: MechDistilGPT2
results:
- task:
name: Causal Language modeling
type: Causal Language modeling
---
# MechDistilGPT2
## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [Training](#training)
- [Environmental Impact](#environmental-impact)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
## Model Details
- **Model Description:**
This model is fine-tuned on text scraped from 100+ Mechanical/Automotive pdf books.
- **Developed by:** [Ashwin](https://huggingface.co/geralt)
- **Model Type:** Causal Language modeling
- **Language(s):** English
- **License:** [More Information Needed]
- **Parent Model:** See the [DistilGPT2model](https://huggingface.co/distilgpt2) for more information about the Distilled-GPT2 base model.
- **Resources for more information:**
- [Research Paper](https://arxiv.org/abs/2105.09680)
- [GitHub Repo](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb)
## Uses
#### Direct Use
The model can be used for tasks including topic classification, Causal Language modeling and text generation
#### Misuse and Out-of-scope Use
The model should not be used to intentionally create hostile or alienating environments for people. In addition, the model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
## Training
#### Training Data
This model is fine-tuned on text scraped from 100+ Mechanical/Automotive pdf books.
#### Training Procedure
###### Fine-Tuning
* Default Training Args
* Epochs = 3
* Training set = 200k sentences
* Validation set = 40k sentences
###### Framework versions
* Transformers 4.7.0.dev0
* Pytorch 1.8.1+cu111
* Datasets 1.6.2
* Tokenizers 0.10.2
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More information needed]
- **Hours used:** [More information needed]
- **Cloud Provider:** [More information needed]
- **Compute Region:** [More information needed"]
- **Carbon Emitted:** [More information needed]
## How to Get Started With the Model
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("geralt/MechDistilGPT2")
model = AutoModelForCausalLM.from_pretrained("geralt/MechDistilGPT2")
```
|