Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/gilf/french-camembert-postag-model/README.md
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: fr
|
3 |
+
widget:
|
4 |
+
- text: "Face à un choc inédit, les mesures mises en place par le gouvernement ont permis une protection forte et efficace des ménages"
|
5 |
+
---
|
6 |
+
|
7 |
+
## About
|
8 |
+
|
9 |
+
The *french-camembert-postag-model* is a part of speech tagging model for French that was trained on the *free-french-treebank* dataset available on
|
10 |
+
[github](https://github.com/nicolashernandez/free-french-treebank). The base tokenizer and model used for training is *'camembert-base'*.
|
11 |
+
|
12 |
+
## Supported Tags
|
13 |
+
|
14 |
+
It uses the following tags:
|
15 |
+
|
16 |
+
| Tag | Category | Extra Info |
|
17 |
+
|----------|:------------------------------:|------------:|
|
18 |
+
| ADJ | adjectif | |
|
19 |
+
| ADJWH | adjectif | |
|
20 |
+
| ADV | adverbe | |
|
21 |
+
| ADVWH | adverbe | |
|
22 |
+
| CC | conjonction de coordination | |
|
23 |
+
| CLO | pronom | obj |
|
24 |
+
| CLR | pronom | refl |
|
25 |
+
| CLS | pronom | suj |
|
26 |
+
| CS | conjonction de subordination | |
|
27 |
+
| DET | déterminant | |
|
28 |
+
| DETWH | déterminant | |
|
29 |
+
| ET | mot étranger | |
|
30 |
+
| I | interjection | |
|
31 |
+
| NC | nom commun | |
|
32 |
+
| NPP | nom propre | |
|
33 |
+
| P | préposition | |
|
34 |
+
| P+D | préposition + déterminant | |
|
35 |
+
| PONCT | signe de ponctuation | |
|
36 |
+
| PREF | préfixe | |
|
37 |
+
| PRO | autres pronoms | |
|
38 |
+
| PROREL | autres pronoms | rel |
|
39 |
+
| PROWH | autres pronoms | int |
|
40 |
+
| U | ? | |
|
41 |
+
| V | verbe | |
|
42 |
+
| VIMP | verbe imperatif | |
|
43 |
+
| VINF | verbe infinitif | |
|
44 |
+
| VPP | participe passé | |
|
45 |
+
| VPR | participe présent | |
|
46 |
+
| VS | subjonctif | |
|
47 |
+
|
48 |
+
More information on the tags can be found here:
|
49 |
+
|
50 |
+
http://alpage.inria.fr/statgram/frdep/Publications/crabbecandi-taln2008-final.pdf
|
51 |
+
|
52 |
+
## Usage
|
53 |
+
|
54 |
+
The usage of this model follows the common transformers patterns. Here is a short example of its usage:
|
55 |
+
|
56 |
+
```python
|
57 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
58 |
+
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained("gilf/french-camembert-postag-model")
|
60 |
+
model = AutoModelForTokenClassification.from_pretrained("gilf/french-camembert-postag-model")
|
61 |
+
|
62 |
+
from transformers import pipeline
|
63 |
+
|
64 |
+
nlp_token_class = pipeline('ner', model=model, tokenizer=tokenizer, grouped_entities=True)
|
65 |
+
|
66 |
+
nlp_token_class('Face à un choc inédit, les mesures mises en place par le gouvernement ont permis une protection forte et efficace des ménages')
|
67 |
+
```
|
68 |
+
|
69 |
+
The lines above would display something like this on a Jupyter notebook:
|
70 |
+
|
71 |
+
```
|
72 |
+
[{'entity_group': 'NC', 'score': 0.5760144591331482, 'word': '<s>'},
|
73 |
+
{'entity_group': 'U', 'score': 0.9946700930595398, 'word': 'Face'},
|
74 |
+
{'entity_group': 'P', 'score': 0.999615490436554, 'word': 'à'},
|
75 |
+
{'entity_group': 'DET', 'score': 0.9995906352996826, 'word': 'un'},
|
76 |
+
{'entity_group': 'NC', 'score': 0.9995531439781189, 'word': 'choc'},
|
77 |
+
{'entity_group': 'ADJ', 'score': 0.999183714389801, 'word': 'inédit'},
|
78 |
+
{'entity_group': 'P', 'score': 0.3710663616657257, 'word': ','},
|
79 |
+
{'entity_group': 'DET', 'score': 0.9995903968811035, 'word': 'les'},
|
80 |
+
{'entity_group': 'NC', 'score': 0.9995649456977844, 'word': 'mesures'},
|
81 |
+
{'entity_group': 'VPP', 'score': 0.9988670349121094, 'word': 'mises'},
|
82 |
+
{'entity_group': 'P', 'score': 0.9996246099472046, 'word': 'en'},
|
83 |
+
{'entity_group': 'NC', 'score': 0.9995329976081848, 'word': 'place'},
|
84 |
+
{'entity_group': 'P', 'score': 0.9996233582496643, 'word': 'par'},
|
85 |
+
{'entity_group': 'DET', 'score': 0.9995935559272766, 'word': 'le'},
|
86 |
+
{'entity_group': 'NC', 'score': 0.9995369911193848, 'word': 'gouvernement'},
|
87 |
+
{'entity_group': 'V', 'score': 0.9993771314620972, 'word': 'ont'},
|
88 |
+
{'entity_group': 'VPP', 'score': 0.9991101026535034, 'word': 'permis'},
|
89 |
+
{'entity_group': 'DET', 'score': 0.9995885491371155, 'word': 'une'},
|
90 |
+
{'entity_group': 'NC', 'score': 0.9995636343955994, 'word': 'protection'},
|
91 |
+
{'entity_group': 'ADJ', 'score': 0.9991781711578369, 'word': 'forte'},
|
92 |
+
{'entity_group': 'CC', 'score': 0.9991298317909241, 'word': 'et'},
|
93 |
+
{'entity_group': 'ADJ', 'score': 0.9992275238037109, 'word': 'efficace'},
|
94 |
+
{'entity_group': 'P+D', 'score': 0.9993300437927246, 'word': 'des'},
|
95 |
+
{'entity_group': 'NC', 'score': 0.8353511393070221, 'word': 'ménages</s>'}]
|
96 |
+
```
|