jgpeters commited on
Commit
e323240
1 Parent(s): f3854f7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -3
README.md CHANGED
@@ -1,3 +1,83 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - METL
5
+ ---
6
+
7
+ # METL
8
+
9
+ <!-- Provide a quick summary of what the model is/does. -->
10
+
11
+ Mutational Effect Transfer Learning (METL) is a framework for pretraining and finetuning biophysics-informed protein language models.
12
+
13
+
14
+ ## Model Details
15
+
16
+ This 🤗 repository contains a wrapper meant to facilitate the ease of use of METL models. Usage of this wrapper will be provided below. Models are hosted on (Zenodo)[https://zenodo.org/records/11051645] and will be downloaded by this wrapper when used.
17
+
18
+ ### Model Description
19
+
20
+ METL is discussed in the (paper)[https://www.biorxiv.org/content/10.1101/2024.03.15.585128v1] in further detail.
21
+
22
+ ### Model Sources [optional]
23
+
24
+ <!-- Provide the basic links for the model. -->
25
+
26
+ - **Repository:** [https://github.com/gitter-lab/metl]
27
+ - **Paper:** [https://www.biorxiv.org/content/10.1101/2024.03.15.585128v1]
28
+ - **Demo:** [https://huggingface.co/spaces/gitter-lab/METL_demo]
29
+
30
+ ## How to Get Started with the Model
31
+
32
+ Use the code below to get started with the model.
33
+
34
+ Running METL requires the following packages:
35
+ ```
36
+ transformers==4.42.4
37
+ numpy>=1.23.2
38
+ networkx>=2.6.3
39
+ scipy>=1.9.1
40
+ biopandas>=0.2.7
41
+ ```
42
+
43
+ In order to run the example, a PDB file must be installed. It is provided (here)[https://github.com/gitter-lab/metl-pretrained/blob/main/pdbs/2qmt_p.pdb] and in raw format (here)[https://raw.githubusercontent.com/gitter-lab/metl-pretrained/main/pdbs/2qmt_p.pdb].
44
+
45
+ After installing those packages and the above file, you may run METL with the following code example (assuming the downloaded file is in the same place as the script):
46
+
47
+ ```python
48
+ from transformers import AutoModel
49
+ import torch
50
+
51
+ metl = AutoModel.from_pretrained('gitter-lab/METL', trust_remote_code=True)
52
+
53
+
54
+ model = "metl-l-2m-3d-gb1"
55
+ wt = "MQYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE"
56
+ variants = '["T17P,T54F", "V28L,F51A"]'
57
+ pdb_path = './2qmt_p.pdb'
58
+
59
+ metl.load_from_ident(model_id)
60
+
61
+ metl.eval()
62
+
63
+ encoded_variants = metl.encoder.encode_variants(sequence, variant)
64
+
65
+ with torch.no_grad():
66
+ predictions = metl(torch.tensor(encoded_variants), pdb_fn=pdb_path)
67
+
68
+ ```
69
+
70
+ ## Training Details
71
+
72
+ <!-- Do we want something here? -->
73
+
74
+ ## Citation [optional]
75
+
76
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
77
+
78
+ Biophysics-based protein language models for protein engineering
79
+ Sam Gelman, Bryce Johnson, Chase Freschlin, Sameer D’Costa, Anthony Gitter, Philip A. Romero
80
+ bioRxiv 2024.03.15.585128; doi: https://doi.org/10.1101/2024.03.15.585128
81
+
82
+ ## Model Card Contact
83
+