--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - gjbooth2/autotrain-data-glenn_ntsa_1 co2_eq_emissions: emissions: 7.937797482362119 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 3621496854 - CO2 Emissions (in grams): 7.9378 ## Validation Metrics - Loss: 0.353 - Accuracy: 0.905 - Macro F1: 0.714 - Micro F1: 0.905 - Weighted F1: 0.890 - Macro Precision: 0.712 - Micro Precision: 0.905 - Weighted Precision: 0.887 - Macro Recall: 0.743 - Micro Recall: 0.905 - Weighted Recall: 0.905 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/gjbooth2/autotrain-glenn_ntsa_1-3621496854 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("gjbooth2/autotrain-glenn_ntsa_1-3621496854", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("gjbooth2/autotrain-glenn_ntsa_1-3621496854", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```