--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small En 3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 3.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 103.04743574321344 --- # Whisper Small En 3 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 3.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5263 - Wer: 103.0474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7717 | 1.34 | 1000 | 0.3452 | 49.7815 | | 0.4884 | 2.67 | 2000 | 0.3808 | 61.0810 | | 0.4106 | 4.01 | 3000 | 0.4805 | 93.7648 | | 0.2197 | 5.34 | 4000 | 0.5263 | 103.0474 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2