glitchyordis
commited on
Commit
•
3d71aaf
1
Parent(s):
8a71eea
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.25 +/- 0.28
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d48fc18e703dbefca1c7f7f285b3e9c8c227a22658f888e99bf31abdaf8d5881
|
3 |
+
size 108046
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe4527e19d0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe4527e0b80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1681310728956654898,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHdD0PvAPqjyt2RU/HdD0PvAPqjyt2RU/HdD0PvAPqjyt2RU/HdD0PvAPqjyt2RU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAx8x5v8ZTHD/H6Ci/b0Pvvj60yr2Vyk6/gZlQP/P2MD8n/0C/zg6Vv7ZnmD5gZ8m/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAd0PQ+8A+qPK3ZFT/E2V07QY7uOpU6V7sd0PQ+8A+qPK3ZFT/E2V07QY7uOpU6V7sd0PQ+8A+qPK3ZFT/E2V07QY7uOpU6V7sd0PQ+8A+qPK3ZFT/E2V07QY7uOpU6V7uUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.47815028 0.02075955 0.5853527 ]\n [0.47815028 0.02075955 0.5853527 ]\n [0.47815028 0.02075955 0.5853527 ]\n [0.47815028 0.02075955 0.5853527 ]]",
|
38 |
+
"desired_goal": "[[-0.9757809 0.6106533 -0.6598019 ]\n [-0.46731135 -0.0989766 -0.80777866]\n [ 0.8148423 0.69126815 -0.7538933 ]\n [-1.1645143 0.29766625 -1.5734673 ]]",
|
39 |
+
"observation": "[[ 0.47815028 0.02075955 0.5853527 0.00338517 0.00182004 -0.00328413]\n [ 0.47815028 0.02075955 0.5853527 0.00338517 0.00182004 -0.00328413]\n [ 0.47815028 0.02075955 0.5853527 0.00338517 0.00182004 -0.00328413]\n [ 0.47815028 0.02075955 0.5853527 0.00338517 0.00182004 -0.00328413]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGsvNO7uWUz3L/Qg+1y8XPaiXF76kHZc+4d4UPpJK4b3g+W49JjJDPfHXqzwn51Y+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.00628032 0.05165742 0.13378064]\n [ 0.03691086 -0.14803946 0.29514802]\n [ 0.14538147 -0.11000551 0.05834377]\n [ 0.04765525 0.02097699 0.20986615]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIw9hCkIPS9b+UhpRSlIwBbJRLMowBdJRHQKZv4o5xR2t1fZQoaAZoCWgPQwjYKVYNwpz4v5SGlFKUaBVLMmgWR0Cmb4znq3VkdX2UKGgGaAloD0MIjGZl+5A3/r+UhpRSlGgVSzJoFkdApm8ocYIjW3V9lChoBmgJaA9DCAYOaOkK1gDAlIaUUpRoFUsyaBZHQKZuz59mYjV1fZQoaAZoCWgPQwgUdeYeEj79v5SGlFKUaBVLMmgWR0CmcNDuBtk4dX2UKGgGaAloD0MIIT1FDhGXAsCUhpRSlGgVSzJoFkdApnB7j1f3OHV9lChoBmgJaA9DCBHDDmPSH/S/lIaUUpRoFUsyaBZHQKZwFvXK8th1fZQoaAZoCWgPQwjrckpATKIBwJSGlFKUaBVLMmgWR0Cmb73pOerddX2UKGgGaAloD0MIqFSJsrfU/L+UhpRSlGgVSzJoFkdApnG8zGgi/3V9lChoBmgJaA9DCHOdRloqr/y/lIaUUpRoFUsyaBZHQKZxZ0Eovzx1fZQoaAZoCWgPQwil942vPfP3v5SGlFKUaBVLMmgWR0CmcQLZzxPPdX2UKGgGaAloD0MIE9OFWP1R/7+UhpRSlGgVSzJoFkdApnCqJ/G2kXV9lChoBmgJaA9DCASRRZp4BwLAlIaUUpRoFUsyaBZHQKZyqhAWznl1fZQoaAZoCWgPQwjrbwnAPyX0v5SGlFKUaBVLMmgWR0CmclSIpH7QdX2UKGgGaAloD0MIi6n0E84u8L+UhpRSlGgVSzJoFkdApnHwLApKBnV9lChoBmgJaA9DCKD9SBEZlvy/lIaUUpRoFUsyaBZHQKZxlyup0fZ1fZQoaAZoCWgPQwhIT5FDxE37v5SGlFKUaBVLMmgWR0Cmc5hy0a60dX2UKGgGaAloD0MIYhVvZB55+r+UhpRSlGgVSzJoFkdApnNC9Iwud3V9lChoBmgJaA9DCNpwWBr4UfW/lIaUUpRoFUsyaBZHQKZy3p7kXDZ1fZQoaAZoCWgPQwjDLLRzmsX5v5SGlFKUaBVLMmgWR0CmcoXZ5AyEdX2UKGgGaAloD0MIYyr9hLM7AMCUhpRSlGgVSzJoFkdApnSY1LrX2HV9lChoBmgJaA9DCIP3VblQefa/lIaUUpRoFUsyaBZHQKZ0Q0ZWJad1fZQoaAZoCWgPQwgiiPNwApMCwJSGlFKUaBVLMmgWR0Cmc98R15jZdX2UKGgGaAloD0MIt3njpDDv/L+UhpRSlGgVSzJoFkdApnOGM+/xlXV9lChoBmgJaA9DCAra5PBJZ/S/lIaUUpRoFUsyaBZHQKZ1jehPCVN1fZQoaAZoCWgPQwiUaTS5GCMAwJSGlFKUaBVLMmgWR0CmdThDw6QvdX2UKGgGaAloD0MIglZgyOq2AcCUhpRSlGgVSzJoFkdApnTT9deIEnV9lChoBmgJaA9DCHNMFvcfWfa/lIaUUpRoFUsyaBZHQKZ0ezfrKNh1fZQoaAZoCWgPQwgGf7+YLTkDwJSGlFKUaBVLMmgWR0CmdoLeIl+mdX2UKGgGaAloD0MIHeOKi6PyAcCUhpRSlGgVSzJoFkdApnYtaGHpKXV9lChoBmgJaA9DCAgiizTxrgXAlIaUUpRoFUsyaBZHQKZ1yTibUgB1fZQoaAZoCWgPQwgB/FOqRBn9v5SGlFKUaBVLMmgWR0CmdXBN21UmdX2UKGgGaAloD0MID0jCvp3E8r+UhpRSlGgVSzJoFkdApndwXCTEBXV9lChoBmgJaA9DCKw5QDBHD/S/lIaUUpRoFUsyaBZHQKZ3Gxyn1nN1fZQoaAZoCWgPQwh2492RsRrwv5SGlFKUaBVLMmgWR0CmdraY3Ns4dX2UKGgGaAloD0MIT135LM+D/r+UhpRSlGgVSzJoFkdApnZd7D2rXHV9lChoBmgJaA9DCAjkEkceSPa/lIaUUpRoFUsyaBZHQKZ4cwrUb1h1fZQoaAZoCWgPQwhjuDoA4i4CwJSGlFKUaBVLMmgWR0CmeB2/i5uqdX2UKGgGaAloD0MIJuDXSBKE/b+UhpRSlGgVSzJoFkdApne50jkdWHV9lChoBmgJaA9DCObrMvynewTAlIaUUpRoFUsyaBZHQKZ3YT0QK8d1fZQoaAZoCWgPQwhXlugss+gFwJSGlFKUaBVLMmgWR0CmeecB2fTTdX2UKGgGaAloD0MIfuIA+n0//L+UhpRSlGgVSzJoFkdApnmSebutwXV9lChoBmgJaA9DCGtJRzmYzfy/lIaUUpRoFUsyaBZHQKZ5Lotcv/R1fZQoaAZoCWgPQwjniedsAaECwJSGlFKUaBVLMmgWR0CmeNYmLLpzdX2UKGgGaAloD0MINIRjlj3J/b+UhpRSlGgVSzJoFkdApntkO/cnE3V9lChoBmgJaA9DCMgIqHAEKQPAlIaUUpRoFUsyaBZHQKZ7D5bhWHV1fZQoaAZoCWgPQwiaeXJNgcwCwJSGlFKUaBVLMmgWR0CmeqvRiPQwdX2UKGgGaAloD0MIP/1nzY+/+7+UhpRSlGgVSzJoFkdApnpUBIWgvnV9lChoBmgJaA9DCH2TpkHRfP6/lIaUUpRoFUsyaBZHQKZ9EtknTiN1fZQoaAZoCWgPQwhpUZ/kDhv5v5SGlFKUaBVLMmgWR0CmfL4E4ecQdX2UKGgGaAloD0MI2bJ8XYb/8L+UhpRSlGgVSzJoFkdApnxaRr8BMnV9lChoBmgJaA9DCNlCkIMSJvy/lIaUUpRoFUsyaBZHQKZ8Am3OObR1fZQoaAZoCWgPQwjS5c3hWu32v5SGlFKUaBVLMmgWR0CmftQ4jrzHdX2UKGgGaAloD0MIP3PWpxxT+r+UhpRSlGgVSzJoFkdApn5/vttygnV9lChoBmgJaA9DCFdAoZ4+gu6/lIaUUpRoFUsyaBZHQKZ+HEPUayd1fZQoaAZoCWgPQwjIsfUM4Zj0v5SGlFKUaBVLMmgWR0CmfcRwAEMcdX2UKGgGaAloD0MIIeS8/4+T9L+UhpRSlGgVSzJoFkdApoB//Lkjo3V9lChoBmgJaA9DCDIge737Y/i/lIaUUpRoFUsyaBZHQKaAKxZdOZd1fZQoaAZoCWgPQwiSJAhXQKH4v5SGlFKUaBVLMmgWR0Cmf8e4b0e2dX2UKGgGaAloD0MIpoC0/wHW77+UhpRSlGgVSzJoFkdApn9vnSv1UXV9lChoBmgJaA9DCLdgqS7gJfG/lIaUUpRoFUsyaBZHQKaCNeVs1sN1fZQoaAZoCWgPQwhQi8HDtK/7v5SGlFKUaBVLMmgWR0CmgeEqtozvdX2UKGgGaAloD0MIg6eQK/VsBMCUhpRSlGgVSzJoFkdApoF9YMfA9HV9lChoBmgJaA9DCJBOXfksz/+/lIaUUpRoFUsyaBZHQKaBJX2dupF1fZQoaAZoCWgPQwjOT3EceLX/v5SGlFKUaBVLMmgWR0Cmg7fKp1ifdX2UKGgGaAloD0MIFtukorE297+UhpRSlGgVSzJoFkdApoNicwxnF3V9lChoBmgJaA9DCGFT51HxP/u/lIaUUpRoFUsyaBZHQKaC/izcAR11fZQoaAZoCWgPQwgijQqcbAP4v5SGlFKUaBVLMmgWR0CmgqU5MlC1dX2UKGgGaAloD0MIYp8AipHl+L+UhpRSlGgVSzJoFkdApoS98qnWKHV9lChoBmgJaA9DCF0av/BKkvm/lIaUUpRoFUsyaBZHQKaEaFyJbdJ1fZQoaAZoCWgPQwgErcCQ1e3zv5SGlFKUaBVLMmgWR0CmhAPa11GLdX2UKGgGaAloD0MIeF4qNua18L+UhpRSlGgVSzJoFkdApoOq+6Ae73V9lChoBmgJaA9DCKPp7GRw1Pq/lIaUUpRoFUsyaBZHQKaFtn+Q2dd1fZQoaAZoCWgPQwhjZMkcy5sAwJSGlFKUaBVLMmgWR0CmhWEOy3TedX2UKGgGaAloD0MIn1bRH5rZAMCUhpRSlGgVSzJoFkdApoT8wJw84nV9lChoBmgJaA9DCLiSHRuBOAfAlIaUUpRoFUsyaBZHQKaEo8W9DhN1fZQoaAZoCWgPQwia7J+nAcP0v5SGlFKUaBVLMmgWR0CmhqaPS2H+dX2UKGgGaAloD0MIOUIG8uzy8L+UhpRSlGgVSzJoFkdApoZRBHCoCXV9lChoBmgJaA9DCJyjjo6rEfK/lIaUUpRoFUsyaBZHQKaF7LGJemh1fZQoaAZoCWgPQwiWB+kpcsj/v5SGlFKUaBVLMmgWR0CmhZO8brC4dX2UKGgGaAloD0MIhXtl3qrr97+UhpRSlGgVSzJoFkdApoeW4qgAZXV9lChoBmgJaA9DCMHicOZXM/y/lIaUUpRoFUsyaBZHQKaHQcWCVbB1fZQoaAZoCWgPQwjqk9xhE9n3v5SGlFKUaBVLMmgWR0Cmht2vbGm2dX2UKGgGaAloD0MIpYP1fw6z/7+UhpRSlGgVSzJoFkdApoaFAVwgknV9lChoBmgJaA9DCDy/KEF/Iey/lIaUUpRoFUsyaBZHQKaImqdYnv51fZQoaAZoCWgPQwiBBMWPMdcBwJSGlFKUaBVLMmgWR0CmiEUOEug6dX2UKGgGaAloD0MIM8UcBB0tAMCUhpRSlGgVSzJoFkdApofgkqtoz3V9lChoBmgJaA9DCPDbEOM1r/2/lIaUUpRoFUsyaBZHQKaHh8baRIV1fZQoaAZoCWgPQwgotRfRdowAwJSGlFKUaBVLMmgWR0CmiYgxagVXdX2UKGgGaAloD0MIgjekUYEzAMCUhpRSlGgVSzJoFkdApokyhBZ6lnV9lChoBmgJaA9DCKOUEKyqV/m/lIaUUpRoFUsyaBZHQKaIze5WilB1fZQoaAZoCWgPQwjqWnufqsIAwJSGlFKUaBVLMmgWR0CmiHVG0/nodX2UKGgGaAloD0MI5wEs8usHBsCUhpRSlGgVSzJoFkdApop7ZHuqm3V9lChoBmgJaA9DCH1Z2qm53Py/lIaUUpRoFUsyaBZHQKaKJg1m8NB1fZQoaAZoCWgPQwh4RfC/lWz/v5SGlFKUaBVLMmgWR0CmicHQY1pCdX2UKGgGaAloD0MIkgVM4Nad8b+UhpRSlGgVSzJoFkdApolo0fozN3V9lChoBmgJaA9DCP/qcd9qHQjAlIaUUpRoFUsyaBZHQKaLfbB42TB1fZQoaAZoCWgPQwiOAdnr3X8EwJSGlFKUaBVLMmgWR0CmiyhJ7LMcdX2UKGgGaAloD0MI8pnsn6fBCsCUhpRSlGgVSzJoFkdAporDwx33YnV9lChoBmgJaA9DCDbknxnEJwDAlIaUUpRoFUsyaBZHQKaKauaF23d1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80c5994449b046daa105e354c6648c5e58c4e1fb6972fc08f8bf8e32d16eb1ca
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e2ab1fdb7c15b3b3327c3f96498732c109a0162bf05ed44660c3fd0f869df8a
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe4527e19d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe4527e0b80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681310728956654898, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHdD0PvAPqjyt2RU/HdD0PvAPqjyt2RU/HdD0PvAPqjyt2RU/HdD0PvAPqjyt2RU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAx8x5v8ZTHD/H6Ci/b0Pvvj60yr2Vyk6/gZlQP/P2MD8n/0C/zg6Vv7ZnmD5gZ8m/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAd0PQ+8A+qPK3ZFT/E2V07QY7uOpU6V7sd0PQ+8A+qPK3ZFT/E2V07QY7uOpU6V7sd0PQ+8A+qPK3ZFT/E2V07QY7uOpU6V7sd0PQ+8A+qPK3ZFT/E2V07QY7uOpU6V7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.47815028 0.02075955 0.5853527 ]\n [0.47815028 0.02075955 0.5853527 ]\n [0.47815028 0.02075955 0.5853527 ]\n [0.47815028 0.02075955 0.5853527 ]]", "desired_goal": "[[-0.9757809 0.6106533 -0.6598019 ]\n [-0.46731135 -0.0989766 -0.80777866]\n [ 0.8148423 0.69126815 -0.7538933 ]\n [-1.1645143 0.29766625 -1.5734673 ]]", "observation": "[[ 0.47815028 0.02075955 0.5853527 0.00338517 0.00182004 -0.00328413]\n [ 0.47815028 0.02075955 0.5853527 0.00338517 0.00182004 -0.00328413]\n [ 0.47815028 0.02075955 0.5853527 0.00338517 0.00182004 -0.00328413]\n [ 0.47815028 0.02075955 0.5853527 0.00338517 0.00182004 -0.00328413]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGsvNO7uWUz3L/Qg+1y8XPaiXF76kHZc+4d4UPpJK4b3g+W49JjJDPfHXqzwn51Y+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00628032 0.05165742 0.13378064]\n [ 0.03691086 -0.14803946 0.29514802]\n [ 0.14538147 -0.11000551 0.05834377]\n [ 0.04765525 0.02097699 0.20986615]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIw9hCkIPS9b+UhpRSlIwBbJRLMowBdJRHQKZv4o5xR2t1fZQoaAZoCWgPQwjYKVYNwpz4v5SGlFKUaBVLMmgWR0Cmb4znq3VkdX2UKGgGaAloD0MIjGZl+5A3/r+UhpRSlGgVSzJoFkdApm8ocYIjW3V9lChoBmgJaA9DCAYOaOkK1gDAlIaUUpRoFUsyaBZHQKZuz59mYjV1fZQoaAZoCWgPQwgUdeYeEj79v5SGlFKUaBVLMmgWR0CmcNDuBtk4dX2UKGgGaAloD0MIIT1FDhGXAsCUhpRSlGgVSzJoFkdApnB7j1f3OHV9lChoBmgJaA9DCBHDDmPSH/S/lIaUUpRoFUsyaBZHQKZwFvXK8th1fZQoaAZoCWgPQwjrckpATKIBwJSGlFKUaBVLMmgWR0Cmb73pOerddX2UKGgGaAloD0MIqFSJsrfU/L+UhpRSlGgVSzJoFkdApnG8zGgi/3V9lChoBmgJaA9DCHOdRloqr/y/lIaUUpRoFUsyaBZHQKZxZ0Eovzx1fZQoaAZoCWgPQwil942vPfP3v5SGlFKUaBVLMmgWR0CmcQLZzxPPdX2UKGgGaAloD0MIE9OFWP1R/7+UhpRSlGgVSzJoFkdApnCqJ/G2kXV9lChoBmgJaA9DCASRRZp4BwLAlIaUUpRoFUsyaBZHQKZyqhAWznl1fZQoaAZoCWgPQwjrbwnAPyX0v5SGlFKUaBVLMmgWR0CmclSIpH7QdX2UKGgGaAloD0MIi6n0E84u8L+UhpRSlGgVSzJoFkdApnHwLApKBnV9lChoBmgJaA9DCKD9SBEZlvy/lIaUUpRoFUsyaBZHQKZxlyup0fZ1fZQoaAZoCWgPQwhIT5FDxE37v5SGlFKUaBVLMmgWR0Cmc5hy0a60dX2UKGgGaAloD0MIYhVvZB55+r+UhpRSlGgVSzJoFkdApnNC9Iwud3V9lChoBmgJaA9DCNpwWBr4UfW/lIaUUpRoFUsyaBZHQKZy3p7kXDZ1fZQoaAZoCWgPQwjDLLRzmsX5v5SGlFKUaBVLMmgWR0CmcoXZ5AyEdX2UKGgGaAloD0MIYyr9hLM7AMCUhpRSlGgVSzJoFkdApnSY1LrX2HV9lChoBmgJaA9DCIP3VblQefa/lIaUUpRoFUsyaBZHQKZ0Q0ZWJad1fZQoaAZoCWgPQwgiiPNwApMCwJSGlFKUaBVLMmgWR0Cmc98R15jZdX2UKGgGaAloD0MIt3njpDDv/L+UhpRSlGgVSzJoFkdApnOGM+/xlXV9lChoBmgJaA9DCAra5PBJZ/S/lIaUUpRoFUsyaBZHQKZ1jehPCVN1fZQoaAZoCWgPQwiUaTS5GCMAwJSGlFKUaBVLMmgWR0CmdThDw6QvdX2UKGgGaAloD0MIglZgyOq2AcCUhpRSlGgVSzJoFkdApnTT9deIEnV9lChoBmgJaA9DCHNMFvcfWfa/lIaUUpRoFUsyaBZHQKZ0ezfrKNh1fZQoaAZoCWgPQwgGf7+YLTkDwJSGlFKUaBVLMmgWR0CmdoLeIl+mdX2UKGgGaAloD0MIHeOKi6PyAcCUhpRSlGgVSzJoFkdApnYtaGHpKXV9lChoBmgJaA9DCAgiizTxrgXAlIaUUpRoFUsyaBZHQKZ1yTibUgB1fZQoaAZoCWgPQwgB/FOqRBn9v5SGlFKUaBVLMmgWR0CmdXBN21UmdX2UKGgGaAloD0MID0jCvp3E8r+UhpRSlGgVSzJoFkdApndwXCTEBXV9lChoBmgJaA9DCKw5QDBHD/S/lIaUUpRoFUsyaBZHQKZ3Gxyn1nN1fZQoaAZoCWgPQwh2492RsRrwv5SGlFKUaBVLMmgWR0CmdraY3Ns4dX2UKGgGaAloD0MIT135LM+D/r+UhpRSlGgVSzJoFkdApnZd7D2rXHV9lChoBmgJaA9DCAjkEkceSPa/lIaUUpRoFUsyaBZHQKZ4cwrUb1h1fZQoaAZoCWgPQwhjuDoA4i4CwJSGlFKUaBVLMmgWR0CmeB2/i5uqdX2UKGgGaAloD0MIJuDXSBKE/b+UhpRSlGgVSzJoFkdApne50jkdWHV9lChoBmgJaA9DCObrMvynewTAlIaUUpRoFUsyaBZHQKZ3YT0QK8d1fZQoaAZoCWgPQwhXlugss+gFwJSGlFKUaBVLMmgWR0CmeecB2fTTdX2UKGgGaAloD0MIfuIA+n0//L+UhpRSlGgVSzJoFkdApnmSebutwXV9lChoBmgJaA9DCGtJRzmYzfy/lIaUUpRoFUsyaBZHQKZ5Lotcv/R1fZQoaAZoCWgPQwjniedsAaECwJSGlFKUaBVLMmgWR0CmeNYmLLpzdX2UKGgGaAloD0MINIRjlj3J/b+UhpRSlGgVSzJoFkdApntkO/cnE3V9lChoBmgJaA9DCMgIqHAEKQPAlIaUUpRoFUsyaBZHQKZ7D5bhWHV1fZQoaAZoCWgPQwiaeXJNgcwCwJSGlFKUaBVLMmgWR0CmeqvRiPQwdX2UKGgGaAloD0MIP/1nzY+/+7+UhpRSlGgVSzJoFkdApnpUBIWgvnV9lChoBmgJaA9DCH2TpkHRfP6/lIaUUpRoFUsyaBZHQKZ9EtknTiN1fZQoaAZoCWgPQwhpUZ/kDhv5v5SGlFKUaBVLMmgWR0CmfL4E4ecQdX2UKGgGaAloD0MI2bJ8XYb/8L+UhpRSlGgVSzJoFkdApnxaRr8BMnV9lChoBmgJaA9DCNlCkIMSJvy/lIaUUpRoFUsyaBZHQKZ8Am3OObR1fZQoaAZoCWgPQwjS5c3hWu32v5SGlFKUaBVLMmgWR0CmftQ4jrzHdX2UKGgGaAloD0MIP3PWpxxT+r+UhpRSlGgVSzJoFkdApn5/vttygnV9lChoBmgJaA9DCFdAoZ4+gu6/lIaUUpRoFUsyaBZHQKZ+HEPUayd1fZQoaAZoCWgPQwjIsfUM4Zj0v5SGlFKUaBVLMmgWR0CmfcRwAEMcdX2UKGgGaAloD0MIIeS8/4+T9L+UhpRSlGgVSzJoFkdApoB//Lkjo3V9lChoBmgJaA9DCDIge737Y/i/lIaUUpRoFUsyaBZHQKaAKxZdOZd1fZQoaAZoCWgPQwiSJAhXQKH4v5SGlFKUaBVLMmgWR0Cmf8e4b0e2dX2UKGgGaAloD0MIpoC0/wHW77+UhpRSlGgVSzJoFkdApn9vnSv1UXV9lChoBmgJaA9DCLdgqS7gJfG/lIaUUpRoFUsyaBZHQKaCNeVs1sN1fZQoaAZoCWgPQwhQi8HDtK/7v5SGlFKUaBVLMmgWR0CmgeEqtozvdX2UKGgGaAloD0MIg6eQK/VsBMCUhpRSlGgVSzJoFkdApoF9YMfA9HV9lChoBmgJaA9DCJBOXfksz/+/lIaUUpRoFUsyaBZHQKaBJX2dupF1fZQoaAZoCWgPQwjOT3EceLX/v5SGlFKUaBVLMmgWR0Cmg7fKp1ifdX2UKGgGaAloD0MIFtukorE297+UhpRSlGgVSzJoFkdApoNicwxnF3V9lChoBmgJaA9DCGFT51HxP/u/lIaUUpRoFUsyaBZHQKaC/izcAR11fZQoaAZoCWgPQwgijQqcbAP4v5SGlFKUaBVLMmgWR0CmgqU5MlC1dX2UKGgGaAloD0MIYp8AipHl+L+UhpRSlGgVSzJoFkdApoS98qnWKHV9lChoBmgJaA9DCF0av/BKkvm/lIaUUpRoFUsyaBZHQKaEaFyJbdJ1fZQoaAZoCWgPQwgErcCQ1e3zv5SGlFKUaBVLMmgWR0CmhAPa11GLdX2UKGgGaAloD0MIeF4qNua18L+UhpRSlGgVSzJoFkdApoOq+6Ae73V9lChoBmgJaA9DCKPp7GRw1Pq/lIaUUpRoFUsyaBZHQKaFtn+Q2dd1fZQoaAZoCWgPQwhjZMkcy5sAwJSGlFKUaBVLMmgWR0CmhWEOy3TedX2UKGgGaAloD0MIn1bRH5rZAMCUhpRSlGgVSzJoFkdApoT8wJw84nV9lChoBmgJaA9DCLiSHRuBOAfAlIaUUpRoFUsyaBZHQKaEo8W9DhN1fZQoaAZoCWgPQwia7J+nAcP0v5SGlFKUaBVLMmgWR0CmhqaPS2H+dX2UKGgGaAloD0MIOUIG8uzy8L+UhpRSlGgVSzJoFkdApoZRBHCoCXV9lChoBmgJaA9DCJyjjo6rEfK/lIaUUpRoFUsyaBZHQKaF7LGJemh1fZQoaAZoCWgPQwiWB+kpcsj/v5SGlFKUaBVLMmgWR0CmhZO8brC4dX2UKGgGaAloD0MIhXtl3qrr97+UhpRSlGgVSzJoFkdApoeW4qgAZXV9lChoBmgJaA9DCMHicOZXM/y/lIaUUpRoFUsyaBZHQKaHQcWCVbB1fZQoaAZoCWgPQwjqk9xhE9n3v5SGlFKUaBVLMmgWR0Cmht2vbGm2dX2UKGgGaAloD0MIpYP1fw6z/7+UhpRSlGgVSzJoFkdApoaFAVwgknV9lChoBmgJaA9DCDy/KEF/Iey/lIaUUpRoFUsyaBZHQKaImqdYnv51fZQoaAZoCWgPQwiBBMWPMdcBwJSGlFKUaBVLMmgWR0CmiEUOEug6dX2UKGgGaAloD0MIM8UcBB0tAMCUhpRSlGgVSzJoFkdApofgkqtoz3V9lChoBmgJaA9DCPDbEOM1r/2/lIaUUpRoFUsyaBZHQKaHh8baRIV1fZQoaAZoCWgPQwgotRfRdowAwJSGlFKUaBVLMmgWR0CmiYgxagVXdX2UKGgGaAloD0MIgjekUYEzAMCUhpRSlGgVSzJoFkdApokyhBZ6lnV9lChoBmgJaA9DCKOUEKyqV/m/lIaUUpRoFUsyaBZHQKaIze5WilB1fZQoaAZoCWgPQwjqWnufqsIAwJSGlFKUaBVLMmgWR0CmiHVG0/nodX2UKGgGaAloD0MI5wEs8usHBsCUhpRSlGgVSzJoFkdApop7ZHuqm3V9lChoBmgJaA9DCH1Z2qm53Py/lIaUUpRoFUsyaBZHQKaKJg1m8NB1fZQoaAZoCWgPQwh4RfC/lWz/v5SGlFKUaBVLMmgWR0CmicHQY1pCdX2UKGgGaAloD0MIkgVM4Nad8b+UhpRSlGgVSzJoFkdApolo0fozN3V9lChoBmgJaA9DCP/qcd9qHQjAlIaUUpRoFUsyaBZHQKaLfbB42TB1fZQoaAZoCWgPQwiOAdnr3X8EwJSGlFKUaBVLMmgWR0CmiyhJ7LMcdX2UKGgGaAloD0MI8pnsn6fBCsCUhpRSlGgVSzJoFkdAporDwx33YnV9lChoBmgJaA9DCDbknxnEJwDAlIaUUpRoFUsyaBZHQKaKauaF23d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (639 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.250525966263376, "std_reward": 0.2807972674354391, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-12T15:33:37.611968"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d3ea25d33fa999abbbe7390c349d773bc17bc35a1c3e32218bf398ef29bdfd4
|
3 |
+
size 2381
|