Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
2
|
3 |
+
language: ro
|
4 |
+
3
|
5 |
+
datasets:
|
6 |
+
4
|
7 |
+
- common_voice
|
8 |
+
5
|
9 |
+
tags:
|
10 |
+
6
|
11 |
+
- audio
|
12 |
+
7
|
13 |
+
- automatic-speech-recognition
|
14 |
+
8
|
15 |
+
- speech
|
16 |
+
9
|
17 |
+
- xlsr-fine-tuning-week
|
18 |
+
10
|
19 |
+
license: apache-2.0
|
20 |
+
11
|
21 |
+
model-index:
|
22 |
+
12
|
23 |
+
- name: XLSR Wav2Vec2 Romanian by George Mihaila
|
24 |
+
13
|
25 |
+
results:
|
26 |
+
14
|
27 |
+
- task:
|
28 |
+
15
|
29 |
+
name: Speech Recognition
|
30 |
+
16
|
31 |
+
type: automatic-speech-recognition
|
32 |
+
17
|
33 |
+
dataset:
|
34 |
+
18
|
35 |
+
name: Common Voice ro
|
36 |
+
19
|
37 |
+
type: common_voice
|
38 |
+
20
|
39 |
+
args: {lang_id}
|
40 |
+
21
|
41 |
+
metrics:
|
42 |
+
22
|
43 |
+
- name: Test WER
|
44 |
+
23
|
45 |
+
type: wer
|
46 |
+
24
|
47 |
+
value: 37.1
|
48 |
+
25
|
49 |
+
---
|
50 |
+
26
|
51 |
+
27
|
52 |
+
# Wav2Vec2-Large-XLSR-53-Turkish
|
53 |
+
28
|
54 |
+
29
|
55 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Romanian using the [Common Voice](https://huggingface.co/datasets/common_voice)
|
56 |
+
30
|
57 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
58 |
+
31
|
59 |
+
32
|
60 |
+
## Usage
|
61 |
+
33
|
62 |
+
34
|
63 |
+
The model can be used directly (without a language model) as follows:
|
64 |
+
35
|
65 |
+
36
|
66 |
+
```python
|
67 |
+
37
|
68 |
+
import torch
|
69 |
+
38
|
70 |
+
import torchaudio
|
71 |
+
39
|
72 |
+
from datasets import load_dataset
|
73 |
+
40
|
74 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
75 |
+
41
|
76 |
+
42
|
77 |
+
test_dataset = load_dataset("common_voice", "ro", split="test[:2%]").
|
78 |
+
43
|
79 |
+
44
|
80 |
+
processor = Wav2Vec2Processor.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
|
81 |
+
45
|
82 |
+
model = Wav2Vec2ForCTC.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
|
83 |
+
46
|
84 |
+
47
|
85 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
86 |
+
48
|
87 |
+
49
|
88 |
+
# Preprocessing the datasets.
|
89 |
+
50
|
90 |
+
# We need to read the aduio files as arrays
|
91 |
+
51
|
92 |
+
def speech_file_to_array_fn(batch):
|
93 |
+
52
|
94 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
95 |
+
53
|
96 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
97 |
+
54
|
98 |
+
return batch
|
99 |
+
55
|
100 |
+
56
|
101 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
102 |
+
57
|
103 |
+
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
104 |
+
58
|
105 |
+
59
|
106 |
+
with torch.no_grad():
|
107 |
+
60
|
108 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
109 |
+
61
|
110 |
+
62
|
111 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
112 |
+
63
|
113 |
+
64
|
114 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
115 |
+
65
|
116 |
+
print("Reference:", test_dataset["sentence"][:2])
|
117 |
+
66
|
118 |
+
```
|
119 |
+
67
|
120 |
+
68
|
121 |
+
69
|
122 |
+
## Evaluation
|
123 |
+
70
|
124 |
+
71
|
125 |
+
The model can be evaluated as follows on the {language} test data of Common Voice.
|
126 |
+
72
|
127 |
+
73
|
128 |
+
74
|
129 |
+
```python
|
130 |
+
75
|
131 |
+
import torch
|
132 |
+
76
|
133 |
+
import torchaudio
|
134 |
+
77
|
135 |
+
from datasets import load_dataset, load_metric
|
136 |
+
78
|
137 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
138 |
+
79
|
139 |
+
import re
|
140 |
+
80
|
141 |
+
81
|
142 |
+
test_dataset = load_dataset("common_voice", "ro", split="test")
|
143 |
+
82
|
144 |
+
wer = load_metric("wer")
|
145 |
+
83
|
146 |
+
84
|
147 |
+
processor = Wav2Vec2Processor.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
|
148 |
+
85
|
149 |
+
model = Wav2Vec2ForCTC.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
|
150 |
+
86
|
151 |
+
model.to("cuda")
|
152 |
+
87
|
153 |
+
88
|
154 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
|
155 |
+
89
|
156 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
157 |
+
90
|
158 |
+
91
|
159 |
+
# Preprocessing the datasets.
|
160 |
+
92
|
161 |
+
# We need to read the aduio files as arrays
|
162 |
+
93
|
163 |
+
def speech_file_to_array_fn(batch):
|
164 |
+
94
|
165 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
166 |
+
95
|
167 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
168 |
+
96
|
169 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
170 |
+
97
|
171 |
+
return batch
|
172 |
+
98
|
173 |
+
99
|
174 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
175 |
+
100
|
176 |
+
101
|
177 |
+
# Preprocessing the datasets.
|
178 |
+
102
|
179 |
+
# We need to read the aduio files as arrays
|
180 |
+
103
|
181 |
+
def evaluate(batch):
|
182 |
+
104
|
183 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
184 |
+
105
|
185 |
+
106
|
186 |
+
with torch.no_grad():
|
187 |
+
107
|
188 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
189 |
+
108
|
190 |
+
109
|
191 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
192 |
+
110
|
193 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
194 |
+
111
|
195 |
+
return batch
|
196 |
+
112
|
197 |
+
113
|
198 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
199 |
+
114
|
200 |
+
115
|
201 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
202 |
+
116
|
203 |
+
```
|
204 |
+
117
|
205 |
+
118
|
206 |
+
**Test Result**: 37.10 %
|
207 |
+
119
|
208 |
+
120
|
209 |
+
121
|
210 |
+
## Training
|
211 |
+
122
|
212 |
+
123
|
213 |
+
The Common Voice `train`, `validation` datasets were used for training.
|
214 |
+
124
|
215 |
+
125
|
216 |
+
The script used for training can be found [here]()
|
217 |
+
126
|