--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: results results: [] --- # results This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1181 - Accuracy: 0.9667 - Precision: 0.9687 - Recall: 0.9667 - F1: 0.9666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2806 | 0.9895 | 59 | 0.2562 | 0.8833 | 0.8896 | 0.8833 | 0.8824 | | 0.047 | 1.9958 | 119 | 0.1286 | 0.9583 | 0.9596 | 0.9583 | 0.9584 | | 0.0946 | 2.9853 | 178 | 0.1196 | 0.9667 | 0.9672 | 0.9667 | 0.9667 | | 0.0037 | 3.9916 | 238 | 0.1181 | 0.9667 | 0.9687 | 0.9667 | 0.9666 | | 0.0021 | 4.9979 | 298 | 0.1189 | 0.9667 | 0.9671 | 0.9667 | 0.9666 | | 0.0039 | 5.9874 | 357 | 0.1515 | 0.9667 | 0.9672 | 0.9667 | 0.9667 | | 0.0013 | 6.9937 | 417 | 0.1703 | 0.9667 | 0.9667 | 0.9667 | 0.9667 | | 0.0012 | 8.0 | 477 | 0.1703 | 0.9583 | 0.9585 | 0.9583 | 0.9583 | | 0.0011 | 8.9895 | 536 | 0.1841 | 0.9667 | 0.9672 | 0.9667 | 0.9667 | | 0.001 | 9.8952 | 590 | 0.1797 | 0.9667 | 0.9672 | 0.9667 | 0.9667 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1