--- library_name: transformers base_model: facebook/roberta-hate-speech-dynabench-r4-target tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: results results: [] --- # results This model is a fine-tuned version of [facebook/roberta-hate-speech-dynabench-r4-target](https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1543 - Accuracy: 0.975 - Precision: 0.9761 - Recall: 0.975 - F1: 0.9750 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4904 | 0.9895 | 59 | 0.3492 | 0.9 | 0.9015 | 0.9 | 0.8997 | | 0.1344 | 1.9958 | 119 | 0.3267 | 0.9333 | 0.9374 | 0.9333 | 0.9330 | | 0.0614 | 2.9853 | 178 | 0.2695 | 0.9333 | 0.9339 | 0.9333 | 0.9334 | | 0.041 | 3.9916 | 238 | 0.2203 | 0.9583 | 0.9614 | 0.9583 | 0.9582 | | 0.0674 | 4.9979 | 298 | 0.2079 | 0.9667 | 0.9687 | 0.9667 | 0.9666 | | 0.0006 | 5.9874 | 357 | 0.1543 | 0.975 | 0.9761 | 0.975 | 0.9750 | | 0.0004 | 6.9937 | 417 | 0.1883 | 0.975 | 0.9751 | 0.975 | 0.9750 | | 0.0002 | 8.0 | 477 | 0.1628 | 0.9667 | 0.9667 | 0.9667 | 0.9667 | | 0.0001 | 8.9895 | 536 | 0.2980 | 0.9667 | 0.9687 | 0.9667 | 0.9666 | | 0.0001 | 9.8952 | 590 | 0.2377 | 0.975 | 0.9761 | 0.975 | 0.9750 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1