moondream-prompt / vision_encoder.py
gokaygokay's picture
Upload vision_encoder.py with huggingface_hub
7d5cd7f verified
raw
history blame
3.6 kB
import torch
from torch import nn
from PIL import Image
from einops import rearrange
from torchvision.transforms.v2 import (
Compose,
Resize,
InterpolationMode,
ToImage,
ToDtype,
Normalize,
)
import timm
class VisualHolder(nn.Module):
def __init__(self, model):
super().__init__()
self.visual = model
def forward(self, x):
return self.visual(x)
class ModelHolder(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, x):
return self.model(x)
class LinearPatchEmbedding(nn.Module):
def __init__(self, conv):
super().__init__()
self.linear = nn.Linear(588, 1152)
self.linear.weight.data = conv.weight.data.view(1152, -1)
if conv.bias is not None:
self.linear.bias.data = conv.bias.data
def forward(self, x):
return self.linear(x)
class MLP(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: int = None,
out_features: int = None,
act_layer: nn.Module = nn.GELU,
) -> None:
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
torch.nn.init.kaiming_normal_(
self.fc1.weight, mode="fan_in", nonlinearity="relu"
)
torch.nn.init.kaiming_normal_(
self.fc2.weight, mode="fan_in", nonlinearity="relu"
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x
class VisionProjection(nn.Module):
def __init__(self):
super().__init__()
image_embedding_dim = 1152
model_dim = 2048
hidden_dim = model_dim * 4
self.mlp = MLP(image_embedding_dim, hidden_dim, model_dim)
@property
def device(self):
return self.mlp.fc1.weight.device
def forward(self, x):
return self.mlp(x)
class VisionEncoder(nn.Module):
def __init__(self) -> None:
super().__init__()
self.encoder = ModelHolder(
VisualHolder(timm.create_model("vit_so400m_patch14_siglip_384"))
)
self.encoder.model.visual.patch_embed = LinearPatchEmbedding(
self.encoder.model.visual.patch_embed.proj
)
self.encoder.model.visual.attn_pool = nn.Identity()
self.projection = VisionProjection()
self.preprocess = Compose(
[
Resize(size=(378, 378), interpolation=InterpolationMode.BICUBIC),
ToImage(),
ToDtype(torch.float32, scale=True),
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
@property
def device(self):
return self.projection.mlp.fc1.weight.device
@property
def dtype(self):
return self.projection.mlp.fc1.weight.dtype
def __call__(self, images) -> torch.Tensor:
if not isinstance(images, list):
images = [images]
with torch.no_grad():
x = torch.stack(
[self.preprocess(image.convert("RGB")) for image in images]
).to(self.device, dtype=self.dtype)
x = rearrange(x, "b c (h p1) (w p2) -> b (h w) (c p1 p2)", p1=14, p2=14)
x = self.encoder(x)
x = self.projection(x)
return x