--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer datasets: - gokuls/wiki_book_corpus_complete_processed_bert_dataset metrics: - accuracy model-index: - name: BERT_pretraining_h_100 results: - task: name: Masked Language Modeling type: fill-mask dataset: name: gokuls/wiki_book_corpus_complete_processed_bert_dataset type: gokuls/wiki_book_corpus_complete_processed_bert_dataset metrics: - name: Accuracy type: accuracy value: 0.046532742314357264 --- # BERT_pretraining_h_100 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the gokuls/wiki_book_corpus_complete_processed_bert_dataset dataset. It achieves the following results on the evaluation set: - Loss: 7.2715 - Accuracy: 0.0465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 36 - eval_batch_size: 36 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100000 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 6.5136 | 0.06 | 10000 | 6.4841 | 0.1332 | | 6.3225 | 0.12 | 20000 | 6.2865 | 0.1452 | | 6.0806 | 0.18 | 30000 | 6.1945 | 0.1482 | | 6.1449 | 0.25 | 40000 | 6.1284 | 0.1497 | | 5.7325 | 0.31 | 50000 | 5.8403 | 0.1609 | | 4.0177 | 0.37 | 60000 | 3.7789 | 0.3887 | | 3.3942 | 0.43 | 70000 | 3.1742 | 0.4638 | | 3.2801 | 0.49 | 80000 | 3.0618 | 0.4775 | | 7.2562 | 0.55 | 90000 | 7.2798 | 0.0432 | | 7.226 | 0.61 | 100000 | 7.2771 | 0.0465 | | 7.2174 | 0.68 | 110000 | 7.2764 | 0.0465 | | 7.232 | 0.74 | 120000 | 7.2745 | 0.0465 | | 7.2003 | 0.8 | 130000 | 7.2730 | 0.0465 | | 7.0964 | 0.86 | 140000 | 7.2725 | 0.0466 | | 7.5174 | 0.92 | 150000 | 7.2729 | 0.0465 | | 7.2674 | 0.98 | 160000 | 7.2729 | 0.0465 | | 7.2044 | 1.04 | 170000 | 7.2729 | 0.0466 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1