End of training
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: gokuls/HBERTv1_48_L10_H128_A2
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- emotion
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: HBERTv1_48_L10_H128_A2_emotion
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: emotion
|
17 |
+
type: emotion
|
18 |
+
config: split
|
19 |
+
split: validation
|
20 |
+
args: split
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.8865
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# HBERTv1_48_L10_H128_A2_emotion
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [gokuls/HBERTv1_48_L10_H128_A2](https://huggingface.co/gokuls/HBERTv1_48_L10_H128_A2) on the emotion dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.3362
|
35 |
+
- Accuracy: 0.8865
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 64
|
56 |
+
- eval_batch_size: 64
|
57 |
+
- seed: 33
|
58 |
+
- distributed_type: multi-GPU
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 10
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 1.4132 | 1.0 | 250 | 1.1283 | 0.5875 |
|
68 |
+
| 0.9519 | 2.0 | 500 | 0.7405 | 0.757 |
|
69 |
+
| 0.6375 | 3.0 | 750 | 0.5533 | 0.8295 |
|
70 |
+
| 0.4709 | 4.0 | 1000 | 0.4480 | 0.8625 |
|
71 |
+
| 0.3802 | 5.0 | 1250 | 0.4056 | 0.8665 |
|
72 |
+
| 0.3246 | 6.0 | 1500 | 0.3581 | 0.877 |
|
73 |
+
| 0.2718 | 7.0 | 1750 | 0.3616 | 0.877 |
|
74 |
+
| 0.2422 | 8.0 | 2000 | 0.3427 | 0.8805 |
|
75 |
+
| 0.2157 | 9.0 | 2250 | 0.3452 | 0.8845 |
|
76 |
+
| 0.2026 | 10.0 | 2500 | 0.3362 | 0.8865 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.34.0
|
82 |
+
- Pytorch 1.14.0a0+410ce96
|
83 |
+
- Datasets 2.14.5
|
84 |
+
- Tokenizers 0.14.0
|