gokuls commited on
Commit
3c4fd71
1 Parent(s): 3897c83

End of training

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: gokuls/HBERTv1_48_L10_H512_A8
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - massive
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: HBERTv1_48_L10_H512_A8_massive
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: massive
17
+ type: massive
18
+ config: en-US
19
+ split: validation
20
+ args: en-US
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.8583374323659616
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # HBERTv1_48_L10_H512_A8_massive
31
+
32
+ This model is a fine-tuned version of [gokuls/HBERTv1_48_L10_H512_A8](https://huggingface.co/gokuls/HBERTv1_48_L10_H512_A8) on the massive dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.8593
35
+ - Accuracy: 0.8583
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 64
56
+ - eval_batch_size: 64
57
+ - seed: 33
58
+ - distributed_type: multi-GPU
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 15
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 2.6536 | 1.0 | 180 | 1.3212 | 0.6542 |
68
+ | 1.0696 | 2.0 | 360 | 0.8384 | 0.7777 |
69
+ | 0.701 | 3.0 | 540 | 0.7514 | 0.8082 |
70
+ | 0.5181 | 4.0 | 720 | 0.7376 | 0.8096 |
71
+ | 0.3958 | 5.0 | 900 | 0.6764 | 0.8269 |
72
+ | 0.3031 | 6.0 | 1080 | 0.6955 | 0.8382 |
73
+ | 0.2378 | 7.0 | 1260 | 0.7173 | 0.8392 |
74
+ | 0.1719 | 8.0 | 1440 | 0.7289 | 0.8401 |
75
+ | 0.1294 | 9.0 | 1620 | 0.7609 | 0.8485 |
76
+ | 0.096 | 10.0 | 1800 | 0.7744 | 0.8465 |
77
+ | 0.0769 | 11.0 | 1980 | 0.8206 | 0.8490 |
78
+ | 0.05 | 12.0 | 2160 | 0.8085 | 0.8564 |
79
+ | 0.034 | 13.0 | 2340 | 0.8537 | 0.8534 |
80
+ | 0.0218 | 14.0 | 2520 | 0.8480 | 0.8564 |
81
+ | 0.0139 | 15.0 | 2700 | 0.8593 | 0.8583 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.34.0
87
+ - Pytorch 1.14.0a0+410ce96
88
+ - Datasets 2.14.5
89
+ - Tokenizers 0.14.0