--- base_model: gokuls/HBERTv1_48_L10_H512_A8 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: HBERTv1_48_L10_H512_A8_massive results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.8583374323659616 --- # HBERTv1_48_L10_H512_A8_massive This model is a fine-tuned version of [gokuls/HBERTv1_48_L10_H512_A8](https://huggingface.co/gokuls/HBERTv1_48_L10_H512_A8) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.8593 - Accuracy: 0.8583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6536 | 1.0 | 180 | 1.3212 | 0.6542 | | 1.0696 | 2.0 | 360 | 0.8384 | 0.7777 | | 0.701 | 3.0 | 540 | 0.7514 | 0.8082 | | 0.5181 | 4.0 | 720 | 0.7376 | 0.8096 | | 0.3958 | 5.0 | 900 | 0.6764 | 0.8269 | | 0.3031 | 6.0 | 1080 | 0.6955 | 0.8382 | | 0.2378 | 7.0 | 1260 | 0.7173 | 0.8392 | | 0.1719 | 8.0 | 1440 | 0.7289 | 0.8401 | | 0.1294 | 9.0 | 1620 | 0.7609 | 0.8485 | | 0.096 | 10.0 | 1800 | 0.7744 | 0.8465 | | 0.0769 | 11.0 | 1980 | 0.8206 | 0.8490 | | 0.05 | 12.0 | 2160 | 0.8085 | 0.8564 | | 0.034 | 13.0 | 2340 | 0.8537 | 0.8534 | | 0.0218 | 14.0 | 2520 | 0.8480 | 0.8564 | | 0.0139 | 15.0 | 2700 | 0.8593 | 0.8583 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.0