--- base_model: gokuls/HBERTv1_48_L12_H768_A12 tags: - generated_from_trainer metrics: - accuracy model-index: - name: HBERTv1_48_L12_H768_A12_massive_data_augmented results: [] --- # HBERTv1_48_L12_H768_A12_massive_data_augmented This model is a fine-tuned version of [gokuls/HBERTv1_48_L12_H768_A12](https://huggingface.co/gokuls/HBERTv1_48_L12_H768_A12) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6902 - Accuracy: 0.8377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0914 | 1.0 | 4000 | 0.6902 | 0.8377 | | 0.6178 | 2.0 | 8000 | 0.6890 | 0.8283 | | 0.463 | 3.0 | 12000 | 0.7721 | 0.8254 | | 0.3683 | 4.0 | 16000 | 0.7829 | 0.8288 | | 0.3005 | 5.0 | 20000 | 0.8556 | 0.8303 | | 0.2502 | 6.0 | 24000 | 0.9171 | 0.8214 | | 0.2106 | 7.0 | 28000 | 1.0074 | 0.8160 | | 0.1779 | 8.0 | 32000 | 1.0923 | 0.8239 | | 0.1506 | 9.0 | 36000 | 1.1525 | 0.8254 | | 0.1259 | 10.0 | 40000 | 1.2103 | 0.8249 | | 0.1059 | 11.0 | 44000 | 1.3093 | 0.8269 | | 0.0894 | 12.0 | 48000 | 1.4000 | 0.8288 | | 0.0745 | 13.0 | 52000 | 1.5050 | 0.8313 | | 0.0624 | 14.0 | 56000 | 1.5424 | 0.8288 | | 0.0521 | 15.0 | 60000 | 1.5973 | 0.8308 | ### Framework versions - Transformers 4.34.1 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.6 - Tokenizers 0.14.1