--- base_model: gokuls/HBERTv1_48_L2_H256_A4 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: HBERTv1_48_L2_H256_A4_massive results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.8362026561731432 --- # HBERTv1_48_L2_H256_A4_massive This model is a fine-tuned version of [gokuls/HBERTv1_48_L2_H256_A4](https://huggingface.co/gokuls/HBERTv1_48_L2_H256_A4) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.6816 - Accuracy: 0.8362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.0609 | 1.0 | 180 | 2.0828 | 0.5416 | | 1.7322 | 2.0 | 360 | 1.2770 | 0.6995 | | 1.1671 | 3.0 | 540 | 0.9723 | 0.7521 | | 0.8923 | 4.0 | 720 | 0.8411 | 0.7723 | | 0.7282 | 5.0 | 900 | 0.7748 | 0.7890 | | 0.6334 | 6.0 | 1080 | 0.7396 | 0.8042 | | 0.5372 | 7.0 | 1260 | 0.7192 | 0.8146 | | 0.4854 | 8.0 | 1440 | 0.7008 | 0.8229 | | 0.4327 | 9.0 | 1620 | 0.6971 | 0.8224 | | 0.3975 | 10.0 | 1800 | 0.6840 | 0.8323 | | 0.3598 | 11.0 | 1980 | 0.6947 | 0.8313 | | 0.334 | 12.0 | 2160 | 0.6791 | 0.8337 | | 0.317 | 13.0 | 2340 | 0.6859 | 0.8323 | | 0.2969 | 14.0 | 2520 | 0.6816 | 0.8347 | | 0.2918 | 15.0 | 2700 | 0.6816 | 0.8362 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.0