--- base_model: gokuls/HBERTv1_48_L6_H768_A12 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: HBERTv1_48_L6_H768_A12_massive results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.8627643876045253 --- # HBERTv1_48_L6_H768_A12_massive This model is a fine-tuned version of [gokuls/HBERTv1_48_L6_H768_A12](https://huggingface.co/gokuls/HBERTv1_48_L6_H768_A12) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.8228 - Accuracy: 0.8628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8011 | 1.0 | 180 | 0.8508 | 0.7678 | | 0.712 | 2.0 | 360 | 0.7073 | 0.8121 | | 0.463 | 3.0 | 540 | 0.6127 | 0.8426 | | 0.3124 | 4.0 | 720 | 0.6141 | 0.8416 | | 0.2196 | 5.0 | 900 | 0.6738 | 0.8431 | | 0.1592 | 6.0 | 1080 | 0.7337 | 0.8387 | | 0.1209 | 7.0 | 1260 | 0.7453 | 0.8411 | | 0.0803 | 8.0 | 1440 | 0.7655 | 0.8460 | | 0.0552 | 9.0 | 1620 | 0.7871 | 0.8495 | | 0.0452 | 10.0 | 1800 | 0.7842 | 0.8598 | | 0.027 | 11.0 | 1980 | 0.8228 | 0.8628 | | 0.0149 | 12.0 | 2160 | 0.8452 | 0.8564 | | 0.0085 | 13.0 | 2340 | 0.8708 | 0.8554 | | 0.0052 | 14.0 | 2520 | 0.8564 | 0.8623 | | 0.0033 | 15.0 | 2700 | 0.8652 | 0.8588 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.0