Model save
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: HBERTv1_emb_compress_48_L10_H512_A8
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# HBERTv1_emb_compress_48_L10_H512_A8
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 5.7663
|
19 |
+
- Accuracy: 0.1739
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 1e-05
|
39 |
+
- train_batch_size: 56
|
40 |
+
- eval_batch_size: 56
|
41 |
+
- seed: 10
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 10000
|
46 |
+
- num_epochs: 5
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:------:|:---------------:|:--------:|
|
52 |
+
| 7.1035 | 0.1 | 10000 | 7.0837 | 0.0844 |
|
53 |
+
| 6.6799 | 0.19 | 20000 | 6.6737 | 0.1072 |
|
54 |
+
| 6.5327 | 0.29 | 30000 | 6.5279 | 0.1194 |
|
55 |
+
| 6.4362 | 0.38 | 40000 | 6.4358 | 0.1272 |
|
56 |
+
| 6.3648 | 0.48 | 50000 | 6.3700 | 0.1335 |
|
57 |
+
| 6.3181 | 0.57 | 60000 | 6.3158 | 0.1355 |
|
58 |
+
| 6.2776 | 0.67 | 70000 | 6.2769 | 0.1380 |
|
59 |
+
| 6.2469 | 0.76 | 80000 | 6.2438 | 0.1400 |
|
60 |
+
| 6.218 | 0.86 | 90000 | 6.2187 | 0.1422 |
|
61 |
+
| 6.2036 | 0.96 | 100000 | 6.1963 | 0.1434 |
|
62 |
+
| 6.1806 | 1.05 | 110000 | 6.1776 | 0.1451 |
|
63 |
+
| 6.1591 | 1.15 | 120000 | 6.1621 | 0.1456 |
|
64 |
+
| 6.1503 | 1.24 | 130000 | 6.1473 | 0.1468 |
|
65 |
+
| 6.1391 | 1.34 | 140000 | 6.1357 | 0.1466 |
|
66 |
+
| 6.126 | 1.43 | 150000 | 6.1230 | 0.1477 |
|
67 |
+
| 6.1145 | 1.53 | 160000 | 6.1133 | 0.1479 |
|
68 |
+
| 6.1067 | 1.62 | 170000 | 6.1040 | 0.1486 |
|
69 |
+
| 6.097 | 1.72 | 180000 | 6.0966 | 0.1488 |
|
70 |
+
| 6.0825 | 1.82 | 190000 | 6.0875 | 0.1492 |
|
71 |
+
| 6.0783 | 1.91 | 200000 | 6.0797 | 0.1494 |
|
72 |
+
| 6.0673 | 2.01 | 210000 | 6.0730 | 0.1499 |
|
73 |
+
| 6.066 | 2.1 | 220000 | 6.0623 | 0.1501 |
|
74 |
+
| 6.0534 | 2.2 | 230000 | 6.0510 | 0.1504 |
|
75 |
+
| 6.0004 | 2.29 | 240000 | 5.9972 | 0.1517 |
|
76 |
+
| 5.9609 | 2.39 | 250000 | 5.9492 | 0.1530 |
|
77 |
+
| 5.93 | 2.49 | 260000 | 5.9169 | 0.1551 |
|
78 |
+
| 5.9058 | 2.58 | 270000 | 5.8895 | 0.1571 |
|
79 |
+
| 5.8834 | 2.68 | 280000 | 5.8618 | 0.1597 |
|
80 |
+
| 5.8572 | 2.77 | 290000 | 5.8394 | 0.1623 |
|
81 |
+
| 5.8296 | 2.87 | 300000 | 5.8168 | 0.1661 |
|
82 |
+
| 5.8085 | 2.96 | 310000 | 5.7926 | 0.1703 |
|
83 |
+
| 5.7873 | 3.06 | 320000 | 5.7663 | 0.1739 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.33.2
|
89 |
+
- Pytorch 1.14.0a0+410ce96
|
90 |
+
- Datasets 2.14.5
|
91 |
+
- Tokenizers 0.13.3
|