--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mobilebert_add_GLUE_Experiment_logit_kd_qqp_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.7595597328716299 - name: F1 type: f1 value: 0.6364486330827631 --- # mobilebert_add_GLUE_Experiment_logit_kd_qqp_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.8027 - Accuracy: 0.7596 - F1: 0.6364 - Combined Score: 0.6980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 1.2838 | 1.0 | 2843 | 1.2200 | 0.6318 | 0.0 | 0.3159 | | 1.0184 | 2.0 | 5686 | 0.8422 | 0.7473 | 0.5924 | 0.6698 | | 0.8633 | 3.0 | 8529 | 0.8232 | 0.7520 | 0.5963 | 0.6742 | | 0.834 | 4.0 | 11372 | 0.8193 | 0.7563 | 0.6271 | 0.6917 | | 0.812 | 5.0 | 14215 | 0.8027 | 0.7596 | 0.6364 | 0.6980 | | 0.7871 | 6.0 | 17058 | nan | 0.6318 | 0.0 | 0.3159 | | 0.0 | 7.0 | 19901 | nan | 0.6318 | 0.0 | 0.3159 | | 0.0 | 8.0 | 22744 | nan | 0.6318 | 0.0 | 0.3159 | | 0.0 | 9.0 | 25587 | nan | 0.6318 | 0.0 | 0.3159 | | 0.0 | 10.0 | 28430 | nan | 0.6318 | 0.0 | 0.3159 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2