gpt_train_12_384
This model is a fine-tuned version of openai-community/gpt2 on the gokuls/wiki_book_corpus_raw_dataset_tiny dataset. It achieves the following results on the evaluation set:
- Loss: 8.8125
- Accuracy: 0.1024
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
10.8984 | 0.0000 | 1 | 10.9062 | 0.0001 |
10.8984 | 0.0001 | 2 | 10.9062 | 0.0001 |
10.8984 | 0.0001 | 3 | 10.9062 | 0.0001 |
10.8984 | 0.0002 | 4 | 10.9062 | 0.0001 |
10.9062 | 0.0002 | 5 | 10.9062 | 0.0001 |
10.8984 | 0.0003 | 6 | 10.9062 | 0.0001 |
10.9062 | 0.0003 | 7 | 10.9062 | 0.0001 |
10.9062 | 0.0004 | 8 | 10.9062 | 0.0001 |
10.9062 | 0.0004 | 9 | 10.9062 | 0.0001 |
10.8984 | 0.0005 | 10 | 10.9062 | 0.0001 |
10.8984 | 0.0005 | 11 | 10.9062 | 0.0001 |
10.8984 | 0.0006 | 12 | 10.9062 | 0.0001 |
10.8984 | 0.0006 | 13 | 10.9062 | 0.0001 |
10.9062 | 0.0007 | 14 | 10.9062 | 0.0001 |
10.8984 | 0.0007 | 15 | 10.9062 | 0.0001 |
10.8984 | 0.0008 | 16 | 10.9062 | 0.0001 |
10.9062 | 0.0008 | 17 | 10.9062 | 0.0001 |
10.9062 | 0.0009 | 18 | 10.7578 | 0.0110 |
10.7734 | 0.0009 | 19 | 10.6562 | 0.0285 |
10.6797 | 0.0010 | 20 | 10.5781 | 0.0469 |
10.6016 | 0.0010 | 21 | 10.5234 | 0.0485 |
10.5234 | 0.0011 | 22 | 10.4766 | 0.0478 |
10.5 | 0.0011 | 23 | 10.4375 | 0.0483 |
10.4531 | 0.0012 | 24 | 10.4062 | 0.0507 |
10.4141 | 0.0012 | 25 | 10.3828 | 0.0531 |
10.3672 | 0.0013 | 26 | 10.3594 | 0.0556 |
10.3828 | 0.0013 | 27 | 10.3359 | 0.0562 |
10.3594 | 0.0014 | 28 | 10.3203 | 0.0562 |
10.3281 | 0.0014 | 29 | 10.3047 | 0.0559 |
10.3203 | 0.0015 | 30 | 10.2969 | 0.0563 |
10.3281 | 0.0015 | 31 | 10.2812 | 0.0566 |
10.3359 | 0.0015 | 32 | 10.2734 | 0.0566 |
10.2656 | 0.0016 | 33 | 10.2656 | 0.0570 |
10.2656 | 0.0016 | 34 | 10.2578 | 0.0561 |
10.2656 | 0.0017 | 35 | 10.2422 | 0.0562 |
10.2656 | 0.0017 | 36 | 10.2344 | 0.0575 |
10.2656 | 0.0018 | 37 | 10.2266 | 0.0586 |
10.2109 | 0.0018 | 38 | 10.2188 | 0.0593 |
10.2656 | 0.0019 | 39 | 10.2109 | 0.0596 |
10.2266 | 0.0019 | 40 | 10.2031 | 0.0599 |
10.2109 | 0.0020 | 41 | 10.1953 | 0.0601 |
10.2109 | 0.0020 | 42 | 10.1797 | 0.0604 |
10.2109 | 0.0021 | 43 | 10.1719 | 0.0608 |
10.1484 | 0.0021 | 44 | 10.1641 | 0.0610 |
10.1875 | 0.0022 | 45 | 10.1484 | 0.0611 |
10.1719 | 0.0022 | 46 | 10.1406 | 0.0612 |
10.1484 | 0.0023 | 47 | 10.1328 | 0.0615 |
10.1172 | 0.0023 | 48 | 10.1172 | 0.0622 |
10.1797 | 0.0024 | 49 | 10.1094 | 0.0632 |
10.1016 | 0.0024 | 50 | 10.1016 | 0.0642 |
10.1406 | 0.0025 | 51 | 10.0938 | 0.0651 |
10.1406 | 0.0025 | 52 | 10.0859 | 0.0658 |
10.1094 | 0.0026 | 53 | 10.0781 | 0.0663 |
10.1016 | 0.0026 | 54 | 10.0703 | 0.0669 |
10.0781 | 0.0027 | 55 | 10.0625 | 0.0672 |
10.0703 | 0.0027 | 56 | 10.0547 | 0.0678 |
10.0703 | 0.0028 | 57 | 10.0469 | 0.0681 |
10.0469 | 0.0028 | 58 | 10.0391 | 0.0686 |
10.1016 | 0.0029 | 59 | 10.0312 | 0.0689 |
10.0547 | 0.0029 | 60 | 10.0312 | 0.0694 |
10.0391 | 0.0030 | 61 | 10.0234 | 0.0695 |
10.0547 | 0.0030 | 62 | 10.0156 | 0.0692 |
10.0312 | 0.0031 | 63 | 10.0078 | 0.0688 |
10.0547 | 0.0031 | 64 | 10.0 | 0.0687 |
10.0547 | 0.0031 | 65 | 9.9922 | 0.0693 |
9.9922 | 0.0032 | 66 | 9.9844 | 0.0697 |
10.0234 | 0.0032 | 67 | 9.9766 | 0.0705 |
10.0 | 0.0033 | 68 | 9.9688 | 0.0711 |
10.0 | 0.0033 | 69 | 9.9609 | 0.0715 |
9.9688 | 0.0034 | 70 | 9.9609 | 0.0716 |
9.9922 | 0.0034 | 71 | 9.9531 | 0.0717 |
9.9844 | 0.0035 | 72 | 9.9453 | 0.0716 |
9.9688 | 0.0035 | 73 | 9.9375 | 0.0718 |
9.9453 | 0.0036 | 74 | 9.9297 | 0.0726 |
9.9375 | 0.0036 | 75 | 9.9219 | 0.0734 |
9.9141 | 0.0037 | 76 | 9.9141 | 0.0744 |
9.9062 | 0.0037 | 77 | 9.9062 | 0.0751 |
9.9219 | 0.0038 | 78 | 9.9062 | 0.0755 |
9.9219 | 0.0038 | 79 | 9.8984 | 0.0756 |
9.9219 | 0.0039 | 80 | 9.8906 | 0.0757 |
9.875 | 0.0039 | 81 | 9.8828 | 0.0759 |
9.9219 | 0.0040 | 82 | 9.875 | 0.0760 |
9.875 | 0.0040 | 83 | 9.875 | 0.0763 |
9.8672 | 0.0041 | 84 | 9.8672 | 0.0765 |
9.9062 | 0.0041 | 85 | 9.8594 | 0.0769 |
9.8828 | 0.0042 | 86 | 9.8516 | 0.0773 |
9.8594 | 0.0042 | 87 | 9.8516 | 0.0775 |
9.8906 | 0.0043 | 88 | 9.8438 | 0.0777 |
9.8047 | 0.0043 | 89 | 9.8359 | 0.0777 |
9.8203 | 0.0044 | 90 | 9.8359 | 0.0778 |
9.8594 | 0.0044 | 91 | 9.8281 | 0.0781 |
9.8438 | 0.0045 | 92 | 9.8203 | 0.0786 |
9.8438 | 0.0045 | 93 | 9.8203 | 0.0790 |
9.8438 | 0.0046 | 94 | 9.8125 | 0.0793 |
9.8359 | 0.0046 | 95 | 9.8047 | 0.0794 |
9.8281 | 0.0046 | 96 | 9.8047 | 0.0795 |
9.8516 | 0.0047 | 97 | 9.7969 | 0.0796 |
9.8281 | 0.0047 | 98 | 9.7891 | 0.0797 |
9.7734 | 0.0048 | 99 | 9.7891 | 0.0798 |
9.8125 | 0.0048 | 100 | 9.7812 | 0.0802 |
9.8203 | 0.0049 | 101 | 9.7734 | 0.0806 |
9.8281 | 0.0049 | 102 | 9.7734 | 0.0809 |
9.7734 | 0.0050 | 103 | 9.7656 | 0.0811 |
9.7891 | 0.0050 | 104 | 9.7578 | 0.0813 |
9.8047 | 0.0051 | 105 | 9.7578 | 0.0814 |
9.7578 | 0.0051 | 106 | 9.75 | 0.0815 |
9.7734 | 0.0052 | 107 | 9.75 | 0.0816 |
9.7891 | 0.0052 | 108 | 9.7422 | 0.0818 |
9.75 | 0.0053 | 109 | 9.7344 | 0.0819 |
9.75 | 0.0053 | 110 | 9.7344 | 0.0821 |
9.7266 | 0.0054 | 111 | 9.7266 | 0.0823 |
9.7656 | 0.0054 | 112 | 9.7188 | 0.0824 |
9.7812 | 0.0055 | 113 | 9.7188 | 0.0824 |
9.7734 | 0.0055 | 114 | 9.7109 | 0.0824 |
9.7266 | 0.0056 | 115 | 9.7109 | 0.0824 |
9.7266 | 0.0056 | 116 | 9.7031 | 0.0826 |
9.7109 | 0.0057 | 117 | 9.6953 | 0.0828 |
9.6719 | 0.0057 | 118 | 9.6953 | 0.0829 |
9.6953 | 0.0058 | 119 | 9.6875 | 0.0830 |
9.6719 | 0.0058 | 120 | 9.6875 | 0.0831 |
9.6953 | 0.0059 | 121 | 9.6797 | 0.0831 |
9.6875 | 0.0059 | 122 | 9.6797 | 0.0831 |
9.6719 | 0.0060 | 123 | 9.6719 | 0.0832 |
9.6719 | 0.0060 | 124 | 9.6641 | 0.0833 |
9.625 | 0.0061 | 125 | 9.6641 | 0.0833 |
9.6719 | 0.0061 | 126 | 9.6562 | 0.0834 |
9.6953 | 0.0062 | 127 | 9.6562 | 0.0836 |
9.6719 | 0.0062 | 128 | 9.6484 | 0.0837 |
9.6797 | 0.0062 | 129 | 9.6406 | 0.0838 |
9.6484 | 0.0063 | 130 | 9.6406 | 0.0839 |
9.6719 | 0.0063 | 131 | 9.6328 | 0.0839 |
9.6328 | 0.0064 | 132 | 9.6328 | 0.0839 |
9.6719 | 0.0064 | 133 | 9.625 | 0.0839 |
9.6484 | 0.0065 | 134 | 9.6172 | 0.0840 |
9.6406 | 0.0065 | 135 | 9.6172 | 0.0841 |
9.6094 | 0.0066 | 136 | 9.6094 | 0.0843 |
9.625 | 0.0066 | 137 | 9.6094 | 0.0845 |
9.6562 | 0.0067 | 138 | 9.6016 | 0.0846 |
9.6172 | 0.0067 | 139 | 9.6016 | 0.0847 |
9.6094 | 0.0068 | 140 | 9.5938 | 0.0847 |
9.6562 | 0.0068 | 141 | 9.5859 | 0.0847 |
9.6562 | 0.0069 | 142 | 9.5859 | 0.0847 |
9.6562 | 0.0069 | 143 | 9.5781 | 0.0848 |
9.6016 | 0.0070 | 144 | 9.5781 | 0.0849 |
9.6094 | 0.0070 | 145 | 9.5703 | 0.0850 |
9.5938 | 0.0071 | 146 | 9.5703 | 0.0851 |
9.5703 | 0.0071 | 147 | 9.5625 | 0.0851 |
9.5859 | 0.0072 | 148 | 9.5625 | 0.0851 |
9.625 | 0.0072 | 149 | 9.5547 | 0.0852 |
9.5859 | 0.0073 | 150 | 9.5469 | 0.0854 |
9.5625 | 0.0073 | 151 | 9.5469 | 0.0855 |
9.5547 | 0.0074 | 152 | 9.5391 | 0.0856 |
9.5703 | 0.0074 | 153 | 9.5391 | 0.0858 |
9.5391 | 0.0075 | 154 | 9.5312 | 0.0858 |
9.5391 | 0.0075 | 155 | 9.5312 | 0.0859 |
9.5 | 0.0076 | 156 | 9.5234 | 0.0861 |
9.5547 | 0.0076 | 157 | 9.5156 | 0.0863 |
9.5391 | 0.0077 | 158 | 9.5156 | 0.0863 |
9.5312 | 0.0077 | 159 | 9.5156 | 0.0864 |
9.5391 | 0.0077 | 160 | 9.5078 | 0.0864 |
9.4688 | 0.0078 | 161 | 9.5 | 0.0866 |
9.5547 | 0.0078 | 162 | 9.5 | 0.0867 |
9.5078 | 0.0079 | 163 | 9.4922 | 0.0869 |
9.5078 | 0.0079 | 164 | 9.4922 | 0.0870 |
9.5 | 0.0080 | 165 | 9.4844 | 0.0872 |
9.5312 | 0.0080 | 166 | 9.4844 | 0.0875 |
9.5156 | 0.0081 | 167 | 9.4766 | 0.0877 |
9.4844 | 0.0081 | 168 | 9.4766 | 0.0878 |
9.4688 | 0.0082 | 169 | 9.4688 | 0.0878 |
9.5156 | 0.0082 | 170 | 9.4609 | 0.0879 |
9.4922 | 0.0083 | 171 | 9.4609 | 0.0879 |
9.4844 | 0.0083 | 172 | 9.4531 | 0.0878 |
9.5234 | 0.0084 | 173 | 9.4531 | 0.0879 |
9.4844 | 0.0084 | 174 | 9.4453 | 0.0879 |
9.4219 | 0.0085 | 175 | 9.4453 | 0.0880 |
9.4062 | 0.0085 | 176 | 9.4375 | 0.0881 |
9.4375 | 0.0086 | 177 | 9.4375 | 0.0883 |
9.4375 | 0.0086 | 178 | 9.4297 | 0.0885 |
9.4688 | 0.0087 | 179 | 9.4297 | 0.0887 |
9.4453 | 0.0087 | 180 | 9.4219 | 0.0888 |
9.4219 | 0.0088 | 181 | 9.4219 | 0.0890 |
9.4141 | 0.0088 | 182 | 9.4141 | 0.0890 |
9.4375 | 0.0089 | 183 | 9.4062 | 0.0890 |
9.3984 | 0.0089 | 184 | 9.4062 | 0.0890 |
9.4297 | 0.0090 | 185 | 9.3984 | 0.0891 |
9.3984 | 0.0090 | 186 | 9.3984 | 0.0891 |
9.3906 | 0.0091 | 187 | 9.3906 | 0.0892 |
9.4219 | 0.0091 | 188 | 9.3906 | 0.0893 |
9.4062 | 0.0092 | 189 | 9.3828 | 0.0895 |
9.375 | 0.0092 | 190 | 9.3828 | 0.0897 |
9.3828 | 0.0093 | 191 | 9.375 | 0.0898 |
9.3906 | 0.0093 | 192 | 9.375 | 0.0898 |
9.3906 | 0.0093 | 193 | 9.3672 | 0.0899 |
9.4141 | 0.0094 | 194 | 9.3672 | 0.0898 |
9.3203 | 0.0094 | 195 | 9.3594 | 0.0898 |
9.3906 | 0.0095 | 196 | 9.3594 | 0.0898 |
9.3594 | 0.0095 | 197 | 9.3516 | 0.0900 |
9.3516 | 0.0096 | 198 | 9.3516 | 0.0901 |
9.3438 | 0.0096 | 199 | 9.3438 | 0.0902 |
9.3516 | 0.0097 | 200 | 9.3438 | 0.0904 |
9.3125 | 0.0097 | 201 | 9.3359 | 0.0906 |
9.3516 | 0.0098 | 202 | 9.3359 | 0.0907 |
9.3359 | 0.0098 | 203 | 9.3281 | 0.0908 |
9.3516 | 0.0099 | 204 | 9.3281 | 0.0907 |
9.3281 | 0.0099 | 205 | 9.3203 | 0.0906 |
9.375 | 0.0100 | 206 | 9.3125 | 0.0905 |
9.2812 | 0.0100 | 207 | 9.3125 | 0.0904 |
9.3281 | 0.0101 | 208 | 9.3047 | 0.0906 |
9.3281 | 0.0101 | 209 | 9.3047 | 0.0908 |
9.3594 | 0.0102 | 210 | 9.2969 | 0.0912 |
9.3438 | 0.0102 | 211 | 9.2969 | 0.0915 |
9.2891 | 0.0103 | 212 | 9.2891 | 0.0916 |
9.3438 | 0.0103 | 213 | 9.2891 | 0.0916 |
9.3047 | 0.0104 | 214 | 9.2812 | 0.0915 |
9.2656 | 0.0104 | 215 | 9.2812 | 0.0914 |
9.2734 | 0.0105 | 216 | 9.2734 | 0.0913 |
9.2891 | 0.0105 | 217 | 9.2734 | 0.0913 |
9.2969 | 0.0106 | 218 | 9.2656 | 0.0913 |
9.25 | 0.0106 | 219 | 9.2656 | 0.0914 |
9.2578 | 0.0107 | 220 | 9.2578 | 0.0915 |
9.25 | 0.0107 | 221 | 9.2578 | 0.0916 |
9.2656 | 0.0108 | 222 | 9.25 | 0.0920 |
9.2578 | 0.0108 | 223 | 9.25 | 0.0923 |
9.2734 | 0.0108 | 224 | 9.2422 | 0.0926 |
9.2891 | 0.0109 | 225 | 9.2422 | 0.0929 |
9.25 | 0.0109 | 226 | 9.2344 | 0.0928 |
9.2344 | 0.0110 | 227 | 9.2344 | 0.0928 |
9.2656 | 0.0110 | 228 | 9.2266 | 0.0927 |
9.2656 | 0.0111 | 229 | 9.2266 | 0.0928 |
9.2656 | 0.0111 | 230 | 9.2188 | 0.0930 |
9.25 | 0.0112 | 231 | 9.2188 | 0.0933 |
9.2891 | 0.0112 | 232 | 9.2109 | 0.0937 |
9.2188 | 0.0113 | 233 | 9.2031 | 0.0938 |
9.2578 | 0.0113 | 234 | 9.2031 | 0.0939 |
9.2422 | 0.0114 | 235 | 9.1953 | 0.0938 |
9.2109 | 0.0114 | 236 | 9.1953 | 0.0935 |
9.1797 | 0.0115 | 237 | 9.1953 | 0.0935 |
9.1953 | 0.0115 | 238 | 9.1875 | 0.0938 |
9.1797 | 0.0116 | 239 | 9.1875 | 0.0943 |
9.2266 | 0.0116 | 240 | 9.1797 | 0.0948 |
9.2109 | 0.0117 | 241 | 9.1719 | 0.0951 |
9.1719 | 0.0117 | 242 | 9.1719 | 0.0954 |
9.2031 | 0.0118 | 243 | 9.1719 | 0.0955 |
9.1953 | 0.0118 | 244 | 9.1641 | 0.0954 |
9.1875 | 0.0119 | 245 | 9.1641 | 0.0950 |
9.2031 | 0.0119 | 246 | 9.1562 | 0.0949 |
9.1797 | 0.0120 | 247 | 9.1484 | 0.0950 |
9.1484 | 0.0120 | 248 | 9.1484 | 0.0952 |
9.1406 | 0.0121 | 249 | 9.1484 | 0.0954 |
9.1641 | 0.0121 | 250 | 9.1406 | 0.0956 |
9.1406 | 0.0122 | 251 | 9.1406 | 0.0956 |
9.1719 | 0.0122 | 252 | 9.1328 | 0.0954 |
9.125 | 0.0123 | 253 | 9.1328 | 0.0953 |
9.1719 | 0.0123 | 254 | 9.125 | 0.0950 |
9.1797 | 0.0124 | 255 | 9.125 | 0.0950 |
9.0859 | 0.0124 | 256 | 9.1172 | 0.0951 |
9.1875 | 0.0124 | 257 | 9.1172 | 0.0957 |
9.1094 | 0.0125 | 258 | 9.1094 | 0.0963 |
9.0938 | 0.0125 | 259 | 9.1094 | 0.0968 |
9.1016 | 0.0126 | 260 | 9.1016 | 0.0969 |
9.1406 | 0.0126 | 261 | 9.1016 | 0.0969 |
9.0781 | 0.0127 | 262 | 9.0938 | 0.0966 |
9.1094 | 0.0127 | 263 | 9.0938 | 0.0963 |
9.1172 | 0.0128 | 264 | 9.0859 | 0.0959 |
9.1172 | 0.0128 | 265 | 9.0859 | 0.0956 |
9.125 | 0.0129 | 266 | 9.0859 | 0.0955 |
9.1094 | 0.0129 | 267 | 9.0781 | 0.0957 |
9.0781 | 0.0130 | 268 | 9.0781 | 0.0964 |
9.125 | 0.0130 | 269 | 9.0703 | 0.0973 |
9.0547 | 0.0131 | 270 | 9.0703 | 0.0980 |
9.0781 | 0.0131 | 271 | 9.0625 | 0.0983 |
9.1016 | 0.0132 | 272 | 9.0625 | 0.0981 |
9.0703 | 0.0132 | 273 | 9.0547 | 0.0975 |
9.0547 | 0.0133 | 274 | 9.0547 | 0.0969 |
9.0312 | 0.0133 | 275 | 9.0469 | 0.0964 |
9.0938 | 0.0134 | 276 | 9.0469 | 0.0964 |
9.0156 | 0.0134 | 277 | 9.0391 | 0.0967 |
9.1094 | 0.0135 | 278 | 9.0391 | 0.0973 |
9.0859 | 0.0135 | 279 | 9.0312 | 0.0980 |
9.0234 | 0.0136 | 280 | 9.0312 | 0.0984 |
9.0781 | 0.0136 | 281 | 9.0234 | 0.0984 |
9.0547 | 0.0137 | 282 | 9.0234 | 0.0983 |
9.0234 | 0.0137 | 283 | 9.0156 | 0.0979 |
9.0312 | 0.0138 | 284 | 9.0156 | 0.0978 |
9.0391 | 0.0138 | 285 | 9.0078 | 0.0978 |
9.0312 | 0.0139 | 286 | 9.0078 | 0.0980 |
9.0625 | 0.0139 | 287 | 9.0078 | 0.0982 |
9.0234 | 0.0139 | 288 | 9.0 | 0.0986 |
9.0078 | 0.0140 | 289 | 9.0 | 0.0990 |
9.0 | 0.0140 | 290 | 8.9922 | 0.0996 |
9.0078 | 0.0141 | 291 | 8.9922 | 0.0997 |
9.0 | 0.0141 | 292 | 8.9844 | 0.0999 |
9.0078 | 0.0142 | 293 | 8.9844 | 0.0999 |
8.9922 | 0.0142 | 294 | 8.9766 | 0.0995 |
9.0078 | 0.0143 | 295 | 8.9766 | 0.0990 |
8.9844 | 0.0143 | 296 | 8.9688 | 0.0985 |
8.9766 | 0.0144 | 297 | 8.9688 | 0.0983 |
8.9531 | 0.0144 | 298 | 8.9609 | 0.0985 |
8.9688 | 0.0145 | 299 | 8.9609 | 0.0988 |
9.0312 | 0.0145 | 300 | 8.9531 | 0.0994 |
9.0156 | 0.0146 | 301 | 8.9531 | 0.0998 |
8.9688 | 0.0146 | 302 | 8.9453 | 0.0999 |
9.0 | 0.0147 | 303 | 8.9453 | 0.0997 |
8.9375 | 0.0147 | 304 | 8.9375 | 0.0996 |
8.9766 | 0.0148 | 305 | 8.9375 | 0.0994 |
8.9375 | 0.0148 | 306 | 8.9375 | 0.0994 |
8.9688 | 0.0149 | 307 | 8.9297 | 0.0997 |
8.9531 | 0.0149 | 308 | 8.9297 | 0.0999 |
8.9531 | 0.0150 | 309 | 8.9219 | 0.1002 |
8.9062 | 0.0150 | 310 | 8.9219 | 0.1003 |
8.9375 | 0.0151 | 311 | 8.9141 | 0.1004 |
8.8828 | 0.0151 | 312 | 8.9141 | 0.1003 |
8.9219 | 0.0152 | 313 | 8.9062 | 0.1003 |
8.9219 | 0.0152 | 314 | 8.9062 | 0.1004 |
8.9297 | 0.0153 | 315 | 8.9062 | 0.1009 |
8.9922 | 0.0153 | 316 | 8.8984 | 0.1011 |
8.9062 | 0.0154 | 317 | 8.8984 | 0.1011 |
8.9297 | 0.0154 | 318 | 8.8906 | 0.1011 |
8.9531 | 0.0155 | 319 | 8.8906 | 0.1008 |
8.9531 | 0.0155 | 320 | 8.8828 | 0.1006 |
8.9375 | 0.0155 | 321 | 8.8828 | 0.1004 |
8.9219 | 0.0156 | 322 | 8.875 | 0.1002 |
8.9062 | 0.0156 | 323 | 8.875 | 0.1004 |
8.8906 | 0.0157 | 324 | 8.875 | 0.1006 |
8.8906 | 0.0157 | 325 | 8.8672 | 0.1011 |
8.8672 | 0.0158 | 326 | 8.8672 | 0.1016 |
8.875 | 0.0158 | 327 | 8.8594 | 0.1019 |
8.8516 | 0.0159 | 328 | 8.8594 | 0.1022 |
8.8672 | 0.0159 | 329 | 8.8516 | 0.1020 |
8.8984 | 0.0160 | 330 | 8.8516 | 0.1018 |
8.875 | 0.0160 | 331 | 8.8438 | 0.1016 |
8.8828 | 0.0161 | 332 | 8.8438 | 0.1014 |
8.8438 | 0.0161 | 333 | 8.8359 | 0.1014 |
8.7969 | 0.0162 | 334 | 8.8359 | 0.1017 |
8.8828 | 0.0162 | 335 | 8.8281 | 0.1020 |
8.8281 | 0.0163 | 336 | 8.8281 | 0.1025 |
8.8203 | 0.0163 | 337 | 8.8281 | 0.1027 |
8.8594 | 0.0164 | 338 | 8.8203 | 0.1028 |
8.8594 | 0.0164 | 339 | 8.8203 | 0.1027 |
8.8203 | 0.0165 | 340 | 8.8125 | 0.1025 |
8.8359 | 0.0165 | 341 | 8.8125 | 0.1024 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.1.0a0+32f93b1
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for gokulsrinivasagan/gpt_train_12_384
Base model
openai-community/gpt2Dataset used to train gokulsrinivasagan/gpt_train_12_384
Evaluation results
- Accuracy on gokuls/wiki_book_corpus_raw_dataset_tinyself-reported0.102