goldfish-models commited on
Commit
20ffcd0
1 Parent(s): b7d432c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: apache-2.0
4
+ language:
5
+ - amh
6
+ datasets:
7
+ - cis-lmu/Glot500
8
+ - castorini/afriberta-corpus
9
+ - allenai/MADLAD-400
10
+ - allenai/nllb
11
+ - oscar-corpus/OSCAR-2109
12
+ library_name: transformers
13
+ pipeline_tag: text-generation
14
+ tags:
15
+ - goldfish
16
+
17
+ ---
18
+
19
+ # amh_ethi_1000mb
20
+
21
+ Goldfish is a suite of monolingual language models trained for 350 languages.
22
+ This model is the <b>Amharic</b> (Ge'ez script) model trained on 1000MB of data, after accounting for an estimated byte premium of 1.72; content-matched text in Amharic takes on average 1.72x as many UTF-8 bytes to encode as English.
23
+ The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
24
+
25
+ Note: amh_ethi is an [individual language](https://iso639-3.sil.org/code_tables/639/data) code. It is not contained in any macrolanguage codes contained in Goldfish (for script ethi).
26
+
27
+ All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://github.com/tylerachang/goldfish/blob/main/goldfish_paper_20240815.pdf).
28
+
29
+ Training code and sample usage: https://github.com/tylerachang/goldfish
30
+
31
+ Sample usage also in this Google Colab: [link](https://colab.research.google.com/drive/1rHFpnQsyXJ32ONwCosWZ7frjOYjbGCXG?usp=sharing)
32
+
33
+ ## Model details:
34
+
35
+ To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/model_details.json.
36
+ All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
37
+ Details for this model specifically:
38
+
39
+ * Architecture: gpt2
40
+ * Parameters: 124770816
41
+ * Maximum sequence length: 512 tokens
42
+ * Training text data (raw): 1720.92MB
43
+ * Training text data (byte premium scaled): 1000.005MB
44
+ * Training tokens: 211767808 (x10 epochs)
45
+ * Vocabulary size: 50000
46
+ * Compute cost: 1.080827696775168e+18 FLOPs or ~102.2 NVIDIA A6000 GPU hours
47
+
48
+ Training datasets (percentages prior to deduplication):
49
+ * 35.99036%: [Glot500](https://huggingface.co/datasets/cis-lmu/Glot500), including [AfriBERTa](https://huggingface.co/datasets/castorini/afriberta-corpus), [AfroMAFT](https://zenodo.org/record/6990611#.Y0-yU-xBw-Q), [CCNet](https://github.com/facebookresearch/cc_net), [Earthlings](https://publicdata.canterbury.ac.nz/Research/Geocorpus/CCGLU_v5.0/), [HornMT](https://github.com/asmelashteka/HornMT), [OSCAR](https://oscar-project.org/), [Parallel Corpora for Ethiopian Languages](https://github.com/AAUThematic4LT/Parallel-Corpora-for-Ethiopian-Languages), [TICO](https://tico-19.github.io/), [W2C](https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0022-6133-9)
50
+ * 33.89884%: [MADLAD-400 (CommonCrawl)](https://huggingface.co/datasets/allenai/MADLAD-400)
51
+ * 23.09942%: [NLLB (CommonCrawl and ParaCrawl)](https://huggingface.co/datasets/allenai/nllb)
52
+ * 6.48807%: [OSCAR 2021/09](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109)
53
+ * 0.48971%: [Wikipedia 2023/08](https://dumps.wikimedia.org/)
54
+ * 0.03361%: [eBible](https://ebible.org/find/)
55
+
56
+
57
+ ## Citation
58
+
59
+ If you use this model, please cite:
60
+
61
+ ```
62
+ @article{chang-etal-2024-goldfish,
63
+ title={Goldfish: Monolingual Language Models for 350 Languages},
64
+ author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.},
65
+ journal={Preprint},
66
+ year={2024},
67
+ }
68
+ ```