goldfish-models commited on
Commit
7602d64
1 Parent(s): 1fc95db

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: apache-2.0
4
+ language:
5
+ - arz
6
+ - ara
7
+ datasets:
8
+ - oscar-corpus/OSCAR-2109
9
+ - cis-lmu/Glot500
10
+ - legacy-datasets/wikipedia
11
+ library_name: transformers
12
+ pipeline_tag: text-generation
13
+ tags:
14
+ - goldfish
15
+
16
+ ---
17
+
18
+ # arz_arab_full
19
+
20
+ Goldfish is a suite of monolingual language models trained for 350 languages.
21
+ This model is the <b>Egyptian Arabic</b> (Arabic script) model trained on 122MB of data (all our data in the language), after accounting for an estimated byte premium of 1.55; content-matched text in Egyptian Arabic takes on average 1.55x as many UTF-8 bytes to encode as English.
22
+ The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
23
+
24
+ Note: arz_arab is an [individual language](https://iso639-3.sil.org/code_tables/639/data) code. However, you may also want to consider the arb_arab (Standard Arabic) models which are trained on more data.
25
+
26
+ All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://github.com/tylerachang/goldfish/blob/main/goldfish_paper_20240815.pdf).
27
+
28
+ Training code and sample usage: https://github.com/tylerachang/goldfish
29
+
30
+ Sample usage also in this Google Colab: [link](https://colab.research.google.com/drive/1rHFpnQsyXJ32ONwCosWZ7frjOYjbGCXG?usp=sharing)
31
+
32
+ ## Model details:
33
+
34
+ To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/model_details.json.
35
+ All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
36
+ Details for this model specifically:
37
+
38
+ * Architecture: gpt2
39
+ * Parameters: 124770816
40
+ * Maximum sequence length: 512 tokens
41
+ * Training text data (raw): 189.83MB
42
+ * Training text data (byte premium scaled): 122.385MB
43
+ * Training tokens: 30322176 (x10 epochs)
44
+ * Vocabulary size: 50000
45
+ * Compute cost: 1.54803509526528e+17 FLOPs or ~14.6 NVIDIA A6000 GPU hours
46
+
47
+ Training datasets (percentages prior to deduplication):
48
+ * 84.18988%: [Wikipedia 2023/08](https://dumps.wikimedia.org/)
49
+ * 8.34266%: [OSCAR 2021/09](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109)
50
+ * 7.36232%: [Glot500](https://huggingface.co/datasets/cis-lmu/Glot500), including [ADD](https://github.com/drelhaj/ArabicDialects), [AraBench](https://alt.qcri.org/resources1/mt/arabench/), [DART](http://qufaculty.qu.edu.qa/telsayed/datasets/), [Habibi](http://ucrel-web.lancaster.ac.uk/habibi/), [Wortschatz Leipzig Data](https://wortschatz.uni-leipzig.de/en/download), [NLLB_seed](https://github.com/facebookresearch/flores/blob/main/nllb_seed/README.md), [OSCAR](https://oscar-project.org/), [QADI](https://alt.qcri.org/resources/qadi), [Tatoeba](https://tatoeba.org/en/), [TeDDi](https://github.com/MorphDiv/TeDDi_sample), [W2C](https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0022-6133-9), [Wikipedia Hugging Face](https://huggingface.co/datasets/legacy-datasets/wikipedia), [WikiMatrix](https://github.com/facebookresearch/LASER/tree/main/tasks/WikiMatrix)
51
+ * 0.09533%: [eBible](https://ebible.org/find/)
52
+ * 0.00981%: [Tatoeba](https://tatoeba.org/en/)
53
+
54
+
55
+ ## Citation
56
+
57
+ If you use this model, please cite:
58
+
59
+ ```
60
+ @article{chang-etal-2024-goldfish,
61
+ title={Goldfish: Monolingual Language Models for 350 Languages},
62
+ author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.},
63
+ journal={Preprint},
64
+ year={2024},
65
+ }
66
+ ```