goldfish-models commited on
Commit
2d5fd2e
1 Parent(s): 079ec0d

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: apache-2.0
4
+ language:
5
+ - nep
6
+ datasets:
7
+ - allenai/MADLAD-400
8
+ - oscar-corpus/OSCAR-2109
9
+ - allenai/nllb
10
+ - cis-lmu/Glot500
11
+ library_name: transformers
12
+ pipeline_tag: text-generation
13
+ tags:
14
+ - goldfish
15
+
16
+ ---
17
+
18
+ # nep_deva_1000mb
19
+
20
+ Goldfish is a suite of monolingual language models trained for 350 languages.
21
+ This model is the <b>Nepali</b> (Devanagari script) model trained on 1000MB of data, after accounting for an estimated byte premium of 2.63; content-matched text in Nepali takes on average 2.63x as many UTF-8 bytes to encode as English.
22
+ The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
23
+
24
+ Note: nep_deva is a [macrolanguage](https://iso639-3.sil.org/code_tables/639/data) code. None of its contained individual languages are included in Goldfish (for script deva).
25
+
26
+ All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://github.com/tylerachang/goldfish/blob/main/goldfish_paper_20240815.pdf).
27
+
28
+ Training code and sample usage: https://github.com/tylerachang/goldfish
29
+
30
+ Sample usage also in this Google Colab: [link](https://colab.research.google.com/drive/1rHFpnQsyXJ32ONwCosWZ7frjOYjbGCXG?usp=sharing)
31
+
32
+ ## Model details:
33
+
34
+ To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/model_details.json.
35
+ All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
36
+ Details for this model specifically:
37
+
38
+ * Architecture: gpt2
39
+ * Parameters: 124770816
40
+ * Maximum sequence length: 512 tokens
41
+ * Training text data (raw): 2629.97MB
42
+ * Training text data (byte premium scaled): 1000.005MB
43
+ * Training tokens: 215368192 (x10 epochs)
44
+ * Vocabulary size: 50000
45
+ * Compute cost: 1.09918502977536e+18 FLOPs or ~103.9 NVIDIA A6000 GPU hours
46
+
47
+ Training datasets (percentages prior to deduplication):
48
+ * 53.66687%: [MADLAD-400 (CommonCrawl)](https://huggingface.co/datasets/allenai/MADLAD-400)
49
+ * 23.99086%: [OSCAR 2021/09](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109)
50
+ * 16.12038%: [NLLB (CommonCrawl and ParaCrawl)](https://huggingface.co/datasets/allenai/nllb)
51
+ * 5.97982%: [Glot500](https://huggingface.co/datasets/cis-lmu/Glot500), including [CCNet](https://github.com/facebookresearch/cc_net), [Earthlings](https://publicdata.canterbury.ac.nz/Research/Geocorpus/CCGLU_v5.0/), [Tatoeba](https://tatoeba.org/en/), [TICO](https://tico-19.github.io/), [W2C](https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0022-6133-9), [WikiMatrix](https://github.com/facebookresearch/LASER/tree/main/tasks/WikiMatrix)
52
+ * 0.24207%: [eBible](https://ebible.org/find/)
53
+
54
+
55
+ ## Citation
56
+
57
+ If you use this model, please cite:
58
+
59
+ ```
60
+ @article{chang-etal-2024-goldfish,
61
+ title={Goldfish: Monolingual Language Models for 350 Languages},
62
+ author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.},
63
+ journal={Preprint},
64
+ year={2024},
65
+ }
66
+ ```