Text Generation
Transformers
PyTorch
Nigerian Pidgin
gpt2
goldfish
text-generation-inference
Inference Endpoints
File size: 2,971 Bytes
320655c
 
 
 
 
 
 
 
 
 
 
 
 
3d57e2f
320655c
 
 
 
 
 
 
 
 
 
3d57e2f
320655c
 
 
 
 
 
 
3ecfc41
320655c
3d57e2f
320655c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d57e2f
320655c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

---
license: apache-2.0
language:
- pcm
datasets:
- castorini/afriberta-corpus
- cis-lmu/Glot500
- castorini/afriberta-corpus
library_name: transformers
pipeline_tag: text-generation
tags:
- goldfish
- arxiv:2408.10441
---

# pcm_latn_5mb

Goldfish is a suite of monolingual language models trained for 350 languages.
This model is the <b>Nigerian Pidgin</b> (Latin script) model trained on 5MB of data, after accounting for an estimated byte premium of 0.95; content-matched text in Nigerian Pidgin takes on average 0.95x as many UTF-8 bytes to encode as English.
The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).

Note: pcm_latn is an [individual language](https://iso639-3.sil.org/code_tables/639/data) code. It is not contained in any macrolanguage codes contained in Goldfish (for script latn).

All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://www.arxiv.org/abs/2408.10441).

Training code and sample usage: https://github.com/tylerachang/goldfish

Sample usage also in this Google Colab: [link](https://colab.research.google.com/drive/1rHFpnQsyXJ32ONwCosWZ7frjOYjbGCXG?usp=sharing)

## Model details:

To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/blob/main/model_details.json.
All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
For best results, make sure that [CLS] is prepended to your input sequence (see sample usage linked above)!
Details for this model specifically:

* Architecture: gpt2
* Parameters: 30698496
* Maximum sequence length: 512 tokens
* Training text data (raw): 4.77MB
* Training text data (byte premium scaled): 5.005MB
* Training tokens: 1119744 (x10 epochs)
* Vocabulary size: 33821
* Compute cost: 846809797754880.0 FLOPs or ~0.1 NVIDIA A6000 GPU hours

Training datasets (percentages prior to deduplication):
* 48.40160%: [AfriBERTa](https://huggingface.co/datasets/castorini/afriberta-corpus)
* 48.06214%: [Glot500](https://huggingface.co/datasets/cis-lmu/Glot500), including [AfriBERTa](https://huggingface.co/datasets/castorini/afriberta-corpus), [AfroMAFT](https://zenodo.org/record/6990611#.Y0-yU-xBw-Q), [Wortschatz Leipzig Data](https://wortschatz.uni-leipzig.de/en/download)
* 3.19131%: [eBible](https://ebible.org/find/)
* 0.34495%: [Wikipedia 2023/08](https://dumps.wikimedia.org/)


## Citation

If you use this model, please cite:

```
@article{chang-etal-2024-goldfish,
  title={Goldfish: Monolingual Language Models for 350 Languages},
  author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.},
  journal={Preprint},
  year={2024},
  url={https://www.arxiv.org/abs/2408.10441},
}
```