File size: 3,690 Bytes
042882d 1402c8a 042882d 1402c8a 042882d bc885e7 042882d 1402c8a 042882d 1402c8a 042882d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
language:
- que
datasets:
- allenai/nllb
- cis-lmu/Glot500
- sil-ai/bloom-lm
- statmt/cc100
- Llamacha/monolingual-quechua-iic
- legacy-datasets/wikipedia
- allenai/MADLAD-400
- oscar-corpus/OSCAR-2109
library_name: transformers
pipeline_tag: text-generation
tags:
- goldfish
- arxiv:2408.10441
---
# que_latn_5mb
Goldfish is a suite of monolingual language models trained for 350 languages.
This model is the <b>Quechua</b> (Latin script) model trained on 5MB of data, after accounting for an estimated byte premium of 1.21; content-matched text in Quechua takes on average 1.21x as many UTF-8 bytes to encode as English.
The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
Note: que_latn is a [macrolanguage](https://iso639-3.sil.org/code_tables/639/data) code. Individual language codes quz_latn (Cusco Quechua) and quy_latn (Ayacucho Quechua) are included in Goldfish, although with less data.
All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://www.arxiv.org/abs/2408.10441).
Training code and sample usage: https://github.com/tylerachang/goldfish
Sample usage also in this Google Colab: [link](https://colab.research.google.com/drive/1rHFpnQsyXJ32ONwCosWZ7frjOYjbGCXG?usp=sharing)
## Model details:
To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/blob/main/model_details.json.
All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
For best results, make sure that [CLS] is prepended to your input sequence (see sample usage linked above)!
Details for this model specifically:
* Architecture: gpt2
* Parameters: 39087104
* Maximum sequence length: 512 tokens
* Training text data (raw): 6.08MB
* Training text data (byte premium scaled): 5.005MB
* Training tokens: 1530368 (x10 epochs)
* Vocabulary size: 50000
* Compute cost: 1156804399595520.0 FLOPs or ~0.1 NVIDIA A6000 GPU hours
Training datasets (percentages prior to deduplication):
* 66.54127%: [NLLB (CommonCrawl and ParaCrawl)](https://huggingface.co/datasets/allenai/nllb)
* 16.31458%: [AmericasNLP (excluding AmericasNLI)](https://turing.iimas.unam.mx/americasnlp/)
* 7.98999%: [Glot500](https://huggingface.co/datasets/cis-lmu/Glot500), including [BLOOM](https://huggingface.co/datasets/sil-ai/bloom-lm), [CC100](https://huggingface.co/datasets/statmt/cc100), [Earthlings](https://publicdata.canterbury.ac.nz/Research/Geocorpus/CCGLU_v5.0/), [OSCAR](https://oscar-project.org/), [Quechua-IIC](https://huggingface.co/datasets/Llamacha/monolingual-quechua-iic), [Tatoeba](https://tatoeba.org/en/), [W2C](https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0022-6133-9), [Wikipedia Hugging Face](https://huggingface.co/datasets/legacy-datasets/wikipedia)
* 5.28328%: [MADLAD-400 (CommonCrawl)](https://huggingface.co/datasets/allenai/MADLAD-400)
* 3.76909%: [Wikipedia 2023/08](https://dumps.wikimedia.org/)
* 0.09735%: [OSCAR 2021/09](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109)
* 0.00445%: [Tatoeba](https://tatoeba.org/en/)
## Citation
If you use this model, please cite:
```
@article{chang-etal-2024-goldfish,
title={Goldfish: Monolingual Language Models for 350 Languages},
author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.},
journal={Preprint},
year={2024},
url={https://www.arxiv.org/abs/2408.10441},
}
```
|