goldfish-models
commited on
Commit
•
1b71a96
1
Parent(s):
1531325
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -18,6 +18,8 @@ Goldfish is a suite of monolingual language models trained for 350 languages.
|
|
18 |
This model is the <b>Sanskrit</b> (Latin script) model trained on 5MB of data, after accounting for an estimated byte premium of 0.97; content-matched text in Sanskrit takes on average 0.97x as many UTF-8 bytes to encode as English.
|
19 |
The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
|
20 |
|
|
|
|
|
21 |
Note: san_latn is a [macrolanguage](https://iso639-3.sil.org/code_tables/639/data) code. None of its contained individual languages are included in Goldfish (for script latn).
|
22 |
|
23 |
All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://github.com/tylerachang/goldfish/blob/main/goldfish_paper_20240815.pdf).
|
|
|
18 |
This model is the <b>Sanskrit</b> (Latin script) model trained on 5MB of data, after accounting for an estimated byte premium of 0.97; content-matched text in Sanskrit takes on average 0.97x as many UTF-8 bytes to encode as English.
|
19 |
The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
|
20 |
|
21 |
+
Note: This language is available in Goldfish with other scripts (writing systems). See: san_deva.
|
22 |
+
|
23 |
Note: san_latn is a [macrolanguage](https://iso639-3.sil.org/code_tables/639/data) code. None of its contained individual languages are included in Goldfish (for script latn).
|
24 |
|
25 |
All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://github.com/tylerachang/goldfish/blob/main/goldfish_paper_20240815.pdf).
|